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Abstract

The Hasse-Minkowski theorem is a local global principle for solutions of nondegenerate quadratic
forms in any number field. In this dissertation, we will prove this for the rationals – that a nonde-
generate quadratic form has a non-trivial solution in the rationals, Q, if and only if it has non-trivial
solutions in the p-adic numbers, Qp, and the reals, R. Serre’s outline [1] will be followed, starting
with an introduction of p-adic numbers, which we will define in two equivalent ways, as an infinite
sum, and more abstractly, as an inverse limit.

We will also study tools that will help prove the Hasse-Minkowski theorem. Hilbert symbols detect
whether a polynomial aX2 + bY 2 = Z2 has a non-trivial solution. Hensel’s Lemma is a p-adic
version of Newton’s approximation method, wchich “lift” solutions from Z/pZ to Zp, the p-adic
integers. Dirichlet’s theorem states that there are infinitely many primes in an arithmetic progression
where the initial term and the difference are coprime. All of these tools, are interesting on their own,
and will be investigated in this dissertation.
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Introduction

The p-adic numbers were first introduced by German mathematician Kurt Hensel in 1897. They were
built from the rational numbers, just like the real numbers, except in a totally novel way. The p-
adic numbers provided the first system of things that were recognisably numbers but had no obvious
relations to the real or complex numbers except that both systems contained the rational numbers.

In 1916, Alexander Ostrowski proved a connection between the real numbers and the p-adic numbers;
that there are only two types of ways to complete the rationals – either using the usual real absolute
value, or using a p-adic absolute value.

Past mathematicians found Hensel’s new numbers interesting but impractical. He then revealed that
they could be used to develop the basics of algebraic number theory in a different way, though some
of what he did had subtle errors. The whole situation changed in 1923 when Hensel’s student Helmut
Hasse discovered a way to make the p-adic numbers a crucial tool for number theorists. Hasse showed
that it was possible to solve a problem locally in all cases, to conclude that it holds globally. Solving a
problem locally and putting the local pieces together has become a major practise in modern number
theory. Hasse’s finding led to the simplification of existing proofs of deep results using class field
theory as well as the discovery of new ones including Wiles’ proof of Fermat’s last theorem. This is
known as the Hasse principle or the local-global principle.

In this dissertation, I will show a proof of a specific case of the Hasse principle – the Hasse-Minkowski
Theorem. The Hasse-Minkowski theorem states that a nondegenerate quadratic form has a root in the
rationals, if and only if it has roots in the p-adic numbers (for every prime) and the real numbers.
It is a fundamental result of number theory. This theorem was proved in the rationals by Hermann
Minkowski and then generalised to number fields by Helmut Hasse.

The proof of Hasse-Minkowski Theorem requires a lot of background, including a study of Hilbert
symbols (introduced by David Hilbert in 1897), Hensel’s lemma, and quadratic forms. We will also
need to use Dirichlet’s Theorem, that there are infinitely many primes in an arithmetic progression
where the initial term and the difference are coprime. Interesting on its own, we will provide motiva-
tion and a proof of Dirichlet’s Theorem, as proved by Dirichlet in 1837.
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Chapter 1

p-adic Numbers

Throughout this dissertation, we let k be an arbitrary field and p a prime number, unless otherwise
stated.

1.1 An introduction to p-adic Numbers

1.1.1 Motivation

In standard base 10 notation, real numbers, say 37 and π = 3.1415 . . . can be written as a linear
combination of powers of p,

37 = 3 · 101 + 7 · 100, π = 3 · 100 + 1 · 10−1 + 4 · 10−2 + · · · .

We generalise this using prime numbers.

Let p a prime. We can write any natural number, a ∈ N as a unique sum of powers of p. For example,
for p = 7 and a = 92, we have,

a = p2 + 6p+ 1.

We can extend this to the rationals. For p = 3 and a = 11, b = 5, then

a = 2 + p2, b = 2 + p.

We first expand 1
b . To do this, first note that 5 | (1− p4), and that

1− p4 = −16 · 5.

It follows that,
1

b
= 1− 4

5
= 1 +

4 · 16
1− p4

= 1 + c(1 + p4 + p8 + · · · ),

Where the last step follows from the formula for a geometric series. We will see later why we can do
this, but for now, we shall say that instead of using the “normal” norm on R, we define a special norm
called the p-adic norm, so that the infinite sum converges. Note that also, c = 64 = 1+ p2 +2p3 and
that 1

b is 4-periodic. Hence,

a

b
=

2 + p2

2 + p
= p+ 2p2 + x4 + 2x5 · · · .

Thus, we loosely claim that any rational number can be written as a Laurent series in powers of pn

that is finite on the left (for small powers). It will be shown that the set of all Laurent series in powers

1
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of pn that are finite on the left form a field. This in fact forms a field called Qp, the p-adic numbers,
as we shall see in the next section.

Now, what happens when we use our standard base 10 notation? For example, let

a = . . . 212890625.

This is in fact an idempotent number (a2 = a), as we shall see. We construct a as so.

Let a = . . . b3b2b1b0 be its expansion and note

a =

∞∑
i=0

bi10
i.

Set the partial sums as

an =

n∑
i=0

bi10
i = a mod 10i+1.

Setting a2 = a, it is clear that for all i ∈ N0,

ai = a2i mod 10i+1.

We choose a0 = 5. Let k ∈ N, then ak = bk10
k + ak−1. It follows that

ak = a2k mod 10k+1

= (bk10
k + ak−1)

2 mod 10k+1

= b2k10
2k + 2bkak−110

k + a2k−1 mod 10k+1

= bk

(ak−1
5

)
10k+1 + a2k−1 mod 10k+1

= a2k−1 mod 10k+1.

Hence, each bk is precisely the k-th digit of a2k−1. Concretely,

a0 = 5, a1 = 25, a2 = 625, a3 = 0625, a4 = 90625, a5 = 890625, . . .

We have the limit, a, satisfies
a2 = a =⇒ 0 = a · (a− 1),

and thus it is a zero divisor. Hence, the 10-adic numbers do not form a field. It is necessary for p to
be prime.

1.1.2 General Notation

Before we dive into the main content, we clarify some notation.

Definition 1.1.1
We define the natural numbers as N = {1, 2, 3, ...}. We also use N0 = N ∪ {0}.
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Definition 1.1.2
An integer, is square-free if it has no square factors.

Definition 1.1.3
A property P holds almost everywhere (on an infinite set I) if P holds on all but a finite number of
i ∈ I .

Note 1.1.4
We will use Zp to mean the p-adic integers, not the cyclic group of order p. For the latter, we use the
standard Z/nZ notation, for n ∈ N.

1.2 A Formal Algebraic Construction of the p-adic Numbers

1.2.1 p-adic Integers

Definition 1.2.1
The sets An with homomorphisms ϕn : An → An−1, indexed over the natural numbers, form an
inverse system

· · · −→ A3
ϕ2−→ A2

ϕ1−→ A1.

The inverse limit of a inverse system is

lim←−An =

{
a = (. . . , a2, a1) ∈

∏
n∈N

An : an = ϕn(an+1), ∀n ∈ N

}
.

Definition 1.2.2
The ring of p-adic integers, Zp, is the inverse limit

Zp = lim←−Z/pnZ,

where An = Z/pnZ and the associated homomorphisms are the canonical

ϕn(an) = an mod pn−1.

Definition 1.2.3
The p-adic valuation of n ∈ Z \∗ {0} is vp : Z \ {0} → R, where vp(a) is the index of the first
non-zero entry. If n = 0, set vp(0) = +∞. Note that indeed, vp(a) is the largest power of p dividing
a.

Proposition 1.2.4
For a, b ∈ Q,

vp(a+ b) ≥ min(vp(a), vp(b)).

Proof.
Let a = pna′, b = pmb′ and wlog suppose m ≤ n. Then,

vp(a+ b) = vp(p
na′ + pmb′) = vp(p

m(pn−ma+ b)) ≥ m = min(vp(a), vp(b)).
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Definition 1.2.5
The p-adic norm of a ∈ Qp \ {0} is

|a|p = e−vp(a).

We also set |0|p = 0.

Proof.
To show that | · |p is a norm, we check the three conditions. Let a, b ∈ Zp

1. Clearly, |a|p = e−vp(a) ≥ 0 and is 0 if and only if a = 0.

2. |ab|p = |a|p|b|p is also clear.

3. By Proposition 1.2.4, |a + b|p ≤ e−min(vp(a),vp(b)) = max(evp(a), evp(b)) ≤ evp(a) + evp(b) =
|a|p + |b|p.

Definition 1.2.6
The p-adic metric of a, b ∈ Q = is d(a, b) = |a− b|p.

Definition 1.2.7
Let a = (. . . , a2, a1) ∈ Zp. Define b0 = a1, and inductively define

bn−1 =
an − an−1
pn−1

,

so that

an =
n−1∑

i=vp(a)

bip
i ≡ a mod pn.

In fact, if we defined the bn ∈ {0, 1, . . . , p− 1} first, then

a =

∞∑
i=vp(a)

bip
i ∈ Zp.

To see this sum converges with the p-adic norm, consider each bipi ∈ Zp with vp(bipi) = i. Then,

|a| ≤
∞∑

i=vp(a)

|bipi|p =
∞∑

i=vp(a)

|bi|e−vp(p
i) =

∞∑
i=vp(a)

|bi|e−i <∞.

since the bi are bounded by p − 1, and
∑
e−i converges. We also have that two p-adic numbers are

close when they share large powers of p.

Write the p-adic expansion of a as

a = . . . b1b0.b−1 . . . bk+1bk = (. . . , a1, a0.a−1, . . . , ak+1, ak).
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Remark 1.2.8
Definition 1.2.1 coincides with Definition 1.2.7, and we will use the notation interchangeably, where
applicable.

This equivalence holds since (using the notation of Definition 1.2.7) a0 = b0 and each
n∑
i=0

bip
i ∈ Z/pnZ

corresponds to an (for all n ∈ N). Checking the homomorphism condition:

ϕn

(
n∑
i=0

bip
i

)
=

n−1∑
i=0

bip
i.

Now we check the valuation. In the previous section, we said vp(a) is the largest power of p dividing
a. Then, the sum terminates at vp(a):

∞∑
i=vp(n)

bip
i,

which means an = 0 for all n < vp(a), showing that vp(a) is indeed the index of the first non-zero
entry.

1.2.1.1 Exact Sequences

Definition 1.2.9
Let Ai be groups and fi : Ai → Ai+1 be homomorphisms. Then, the sequence

A0
f1−→ A1

f2−→ A2
f3−→ · · · fn−→ An

is an exact sequence if for every k,
im fk = ker fk+1.

Theorem 1.2.10
A short sequence,

0 −→ A
f−→ B

g−→ C −→ 0,

is exact if and only if f is injective, g is surjective, and im(f) = ker(g).

In particular, B/ im f ∼= C.

Proof.
See page 12 of [8] for a discussion on exact sequences.

Proposition 1.2.11
Let n ∈ N and a = (. . . , a2, a1) ∈ Zp be a p-adic number. Let pn denote the map a → pna and πn
denotes the map a→ an, then

0 −→ Zp
pn−→ Zp

πn−→ Z/pnZ −→ 0

is an exact sequence.
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Proof.
Clearly, pna = (. . . , pna2, p

na1, 0, . . . (n times), 0), and hence, the map pn is injective. The image
of pn are p-adic numbers that have n leading zeros, in particular, the n-th component of pna is 0.
Thus πn(im pn) = 0 and im pn ⊂ kerπn.

Conversely, let xn ∈ Z/pnZ, bi = xn mod pi, and b = (. . . , bi, . . . , b2, b1) ∈ Zp. Then, clearly,
πn(b) = xn and πn is surjective. Now, let a ∈ kerπn, then πn(a) = an = 0, and thus, am = 0 for
m < n. It is also necessary that for m > n, am = 0 (mod p)n, so there exists cm−n ∈ Z/pm−nZ
such that am = pncm−n. Now, a = pn(. . . , c2, c1), thus, kerπn ⊂ im pn. Hence, the sequence is
exact.

Corollary 1.2.12
Zp/pnZp ∼= Z/pnZ.

Proof.
Since the exact sequence given in the previous proposition is a short sequence, the result follows by
applying Theorem 1.2.10.

Proposition 1.2.13
(Zp, vp) is an integral domain.

Proof.
Let a, b ∈ Z∗p. Then, vp(ab) = vp(a) + vp(b) <∞ and thus ab 6= 0.

Theorem 1.2.14
A element of Zp is a unit if and only if it is not divisible by p. That is,

Z∗p = U(Zp) = Zp \ 〈p〉 = {a ∈ Zp : vp(a) = 0}.

Proof.
Suppose a ∈ Zp is invertible. Then, there exists b ∈ Zp such that ab = 1. Then,

vp(a) + vp(b) = vp(ab) = vp(1) = 0.

Since for all x ∈ Zp, vp(x) ≥ 0, it follows vp(a) = vp(b) = 0, that is, p - a.

Conversely, suppose p - a. Write a = (. . . , a1, a0), where each ai 6≡ 0 mod p. Then, each ai is
invertible in Z/piZ, and it follows, a−1 = (. . . , a−11 , a−10 ).

Corollary 1.2.15
Every nonzero element a ∈ Zp can be written uniquely as

a = pvp(a)u, with u ∈ Z∗p.
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Proof.
Let a ∈ Zp \ {0} and n = vp(a). Then a = pmu, for some u ∈ Zp. Now,

n = vp(a) = vp(p
nu) = vp(p

n) + vp(u) = n+ vp(u),

and hence, vp(u) = 0, and u ∈ Z∗p.

Corollary 1.2.16
Zp is a principal ideal domain with unique maximal ideal 〈p〉.

Proof.
Let {0} 6= I ⊂ Zp be an ideal, let n = min{vp(a) : a ∈ I}. Note n <∞ since I 6= {0}, and pn | a.
So, I ⊂ 〈pn〉.

Conversely, take a ∈ I such that vp(a) = n. Write a = pnu, where u ∈ Z∗p. Then, u−1a = pn ∈ I ,
so 〈pn〉 ⊂ I .

Thus, I = 〈pn〉, for any ideal. Now, 〈pn〉 ⊂ 〈p〉. In particular, 〈p〉 is maximal.

Theorem 1.2.17
Zp is compact.

Proof.
For each n ∈ N, Z/pnZ is finite, thus compact with respect to the discrete topology. By Tychonoff’s
theorem (see a topology book, e.g. [9] Theorem 17.8, page 120), the product,

∏∞
n=1 Z/pnZ, is

compact with respect to the product topology. Note that by definition, Zp is a subring of
∏∞
n=1 Z/pnZ.

Define f : Zp → Zp by

f((. . . , x1, x0)) = (. . . , y1, y0), (yn−1) = (ϕn(xn)− xn−1),

where the ϕn are as in Definition 1.2.2. Then, f is continuous and Zp = f−1({0}). Thus, Zp is
closed in

∏∞
n=1 Z/pnZ, and thus compact.

Corollary 1.2.18
(Zp, d) is complete.

Proof.
A compact space is complete (again, check a topology textbook).

Remark 1.2.19
An open set in the product topology is a union of products,

∏∞
i=1 Ui, such that each Ui is open in

Z/piZ, and almost all Ui = Z/piZ (see a topology textbook). It follows that pnZp are neighbour-
hoods of 0. We also have that the operations are continuous with the topology.
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1.2.2 p-adic Numbers

Definition 1.2.20
The field of p-adic numbers, Qp, is the field of fractions of Zp. That is,

Qp = Quot(Zp) = Zp[p−1].

Definition 1.2.21
For a = x

y ∈ Qp with x ∈ Zp and y ∈ Zp \ {0}, set

vp(a) = vp(x)− vp(y).

Remark 1.2.22
Let a = x1

y1
= x2

y2
∈ Qp. By the fundamental theorem of arithmetic, vp(x1y2) = vp(x1) + vp(y2)

and vp(x2y1) = vp(x2) + vp(y1). Since x1y2 = x2y1, it follows that vp(a) does not depend on the
representation of a.

Remark 1.2.23
We can extend Definition 1.2.7 to work with Qp. Every element in the field of fractions can be written
as a = x

y ∈ Qp with x ∈ Zp and y ∈ Zp \ {0}. By Corollary 1.2.15, y = pvp(y)u for some invertible
u ∈ Z∗p. Then,

x

y
=
xu−1

pvp(y)
.

Since xu−1 ∈ Zp, it is clear that any p-adic number can be written as
∞∑

i=vp(x)−vp(y)

cip
i,

with coefficients ci as in the expansion of au−1.

Since smaller powers of p have larger norms, this is also another way to see why p-adic numbers must
terminate on the right, but can have very large powers of pn.

Corollary 1.2.24
Every nonzero element a ∈ Qp can be written uniquely as

a = pvp(a)u, with u ∈ Z∗p.

And vp(a) ≥ 0 if and only if a ∈ Zp.

Proof.
The first statement immediately from the previous remark and Corollary 1.2.15. The second statement
also follows from the equivalent infinite sum definition of the p-adic numbers.

Corollary 1.2.25
Qp is locally compact.

Proof.
For any a ∈ Qp, a+ Zp is a compact neighbourhood.
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1.2.3 Examples

Example 1.2.26
Take the rational numbers 8

9 = 23 · 3−2, 10 = 2 · 5, and − 3
160 = −3 · 2−5 · 5. Then we have the

following p-adic norms:∣∣∣∣89
∣∣∣∣
2

=
1

8
|10|2 =

1

2

∣∣∣∣− 3

160

∣∣∣∣
2

= 32∣∣∣∣89
∣∣∣∣
3

= 9 |10|3 = 1

∣∣∣∣− 3

160

∣∣∣∣
3

= 3∣∣∣∣89
∣∣∣∣
5

= 1 |10|5 =
1

5

∣∣∣∣− 3

160

∣∣∣∣
5

= 5.

For p = 2, we have the following expansions. These have been calculated on Maple1.

8

92
= . . . 0111001000

102 = 01010.0 = (. . . , 10, 10, 2, 2, 0.)

− 3

1602
= 1100.11001

Example 1.2.27
The series,

∑∞
i=0 2

i diverges with the usual Euclidean Norm. But if we consider the 2-adic norm, the
sum converges, since limi→∞ |2i|2 = 0 and thus,∣∣∣∣∣

∞∑
i=0

2i

∣∣∣∣∣
2

≤
∞∑
i=0

∣∣2i∣∣
2
=
∞∑
i=0

e−i <∞.

Concretely, ( ∞∑
i=0

2i

)
2

= 1. = −12.

This is related to “two’s complement” as in binary computing.

1.3 Ostrowski’s Theorem

Definition 1.3.1
An absolute value on k is a function

| · | : k→ {x ∈ R : x ≥ 0}

such that
1Maple can be found at https://www.maplesoft.com/products/maple/. The function used was evalp.
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1. |x| = 0 if and only if x = 0,

2. |xy| = |x||y| for all x, y ∈ k,

3. |x+ y| ≤ |x|+ |y| for all x, y ∈ k (triangle inequality).

In particular, an absolute value is a special case of a norm.

Definition 1.3.2
Write | · |∞ as the usual real absolute value and Q∞ = R as the reals. Recall | · |p is the p-adic absolute
value.

Definition 1.3.3
Two absolute values, | · | and || · || on a field k are equivalent if there exists α ∈ R+ such that for every
x ∈ k

|x| = ||x||α.

Lemma 1.3.4
Let | · | be an absolute value on Q. Then |1| = | − 1| = 1.

Proof.
Since |1| = |1 · 1| = |1|2, it follows |1| = 1. Similarly, |1| = | − 1 · −1| = | − 1|2, so | − 1| = 1 since
absolute value are non-negative.

Theorem 1.3.5 (Ostrowski’s Theorem)
Every non-trivial absolute value on Q is equivalent to either the real or a p-adic absolute value.

Proof.
Let | · | be a non-trivial absolute value on Q. We consider two cases.

1. ∃n ∈ N, |n| > 1, then | · | is the real absolute value.

2. ∀n ∈ N, |n| ≤ 1, then | · | is a p-adic absolute value.

Suppose there exists n ∈ N such that |n| > 1. Let n0 be the smallest such n. Let

α =
log |n0|
log n0

,

this is well defined since n0 and |n0| are both greater than 1. Note that |n0| = nα0 . We will prove that
this α works for all of Q. It is sufficient to show that |n| = nα for n ∈ N, since for any rational, ± n

m
with n,m ∈ N, ∣∣∣ n

m

∣∣∣ = |n||m| = nα

mα
=
( n
m

)α
.

Now, write n in base n0,
n = a0 + a1n0 + a2n

2
0 + · · ·+ akn

k
0,
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where ai ∈ 0, 1, · · · , n0 − 1 and k = b logn
logn0

c. It follows that

|n| = |a0 + a1n0 + a2n
2
0 + · · ·+ akn

k
0|

≤ |a0|+ |a1|nα0 + |a2|n2α0 + · · ·+ |ak|nkα0 (triangle inequality)

≤ 1 + nα0 + n2α0 + · · ·+ nkα0 (|n0| ≥ 1 minimal, ai < n, |ai| ≤ 1)

= nkα0

(
1 + n−α0 + · · ·+ n−kα0

)
≤ nkα0

1− n−α(k+1)
0

1− n−α0

(geometric series, n0 6= 1)

= nkα0
nα0 − n

−αk
0

nα0 − 1

≤ nkα0
nα0

nα0 − 1
(n0 > 1)

≤ nα nα0
nα0 − 1

(nk0 ≤ n).

Since n was arbitrary,

|ni| ≤ niα nα0
nα0 − 1

=⇒ |n| ≤ nα
(

nα0
nα0 − 1

) 1
i

.

Taking limits, i→∞, it follows that the constant goes to 1, and thus |n| ≤ nα.

To show the converse inequality, first see that n(k+1)α = |nk+1
0 | ≤ |n|+ |nk+1

0 − n|. So,

|n| ≥ n(k+1)α − |nk+1
0 − n|

≥ n(k+1)α − (nk+1
0 − n)α

= n
(k+1)α
0

(
1−

(
1− 1

n0

)α)
≥ nkα

(
1−

(
1− 1

n0

)α)
,

since nk+1
0 > n ≥ nk0 . Since n was arbitrary, it again follows by taking powers and limits, |n| ≥ nα.

Thus, |n| = nα = |n|α∞ and hence, |x| = |x|α∞, for all x ∈ Q.

Now consider the case where for all n ∈ N, |n| ≤ 1. Note that by Lemma 1.3.4, | − n| ≤ 1 also.
Since | · | is non-trivial, not all elements have absolute value 1. In particular, there is a natural number
with a norm strictly less than 1 (for if not, then since every rational is a quotient of two natural
numbers and ±1, every rational has norm 1). Let n0 ∈ N be the smallest number such that |n0| < 1.
Now, suppose for a contradiction that n0 is composite, that there exists a, b ∈ N \ {1} such that
n0 = ab. Then, both a and b are less than n0, and thus, |a| = |b| = 1. So |n0| = 1, a contradiction.
Hence n0 is prime.
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Let n ∈ Z such that gcd(n, n0) = 1. Then, for any i ∈ N, gcd(ni, ni0) = 1 also. Thus by Bézout’s
Identity, there exists xi, yi ∈ Z (so both have absolute value less than 1) such that

xin
i + yin

i
0 = 1.

It follows that,
1 = |1| ≤ |nixi|+ |ni0yi| ≤ |n|i + |n0|i.

Since |n0| < 1,
lim
i→∞
|n0|i = 0,

and hence, |n|i ≥ 1 for sufficiently large i. But since n was an arbitrary integer coprime to n0, we
can consider ni. Hence, for all n coprime to n0, |n| ≥ 1, and hence |n| = 1.

Now for any m ∈ Z, write
m = n

vn0 (m)
0 n

where gcd(n, n0) = 1. Then,

|m| = |n0|vn0 (m)|n| = |n0|vn0 (m).

Write
α = −log |n0|.

It follows that
m = |n0|vn0 (m) =

(
e−vn0 (m)

)α
= |m|αn0

.

Remark 1.3.6
There are many extensions to Ostrowski’s Theorem. One such is extending the theorem to work over
any number field (finite field extension of Q). Defining an analogous p-adic norm using prime ideals
and the order of an element in that ideal, this version of Ostrowski’s Theorem says that any non-trivial
absolute value is either this p-adic norm, or an absolute value that comes from either a real or complex
embedding of the number field. Refer to [5] for more details.

1.4 Hensel’s Lemma

We now show a p-adic analogy of Newton’s method.

Definition 1.4.1
Let F (X) = a0 + a1X + a2X

2 + · + anX
n ∈ k[X1, X2, ..., Xn] a polynomial. Then its formal

derivative is
F ′(X) = a1 + 2a2X + ·+ nanX

n−1.

Theorem 1.4.2 (Hensel’s Lemma)
Let F (X) = c0 + c1X + c2X

2 + · + cnX
d ∈ Zp[X] a polynomial. Suppose there exists a p-adic

integer, a ∈ Zp, such that

F (a) ≡ 0 mod p, and F ′(a) 6≡ 0 mod p.
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Then there exists a unique p-adic integer b ∈ Zp such that

b ≡ a mod p, and F (b) = 0.

Proof.
Let a1 = a. Then by assumption, F (a1) ≡ 0 mod p and F ′(a1) 6≡ 0 mod p. Now suppose as the
inductive hypothesis that for k ∈ N, there exists a unique ak mod pk such that

F (ak) ≡ 0 mod pk, and ak ≡ a1 mod p

Since ak+1 ≡ an mod pn, write

ak+1 = ak + tpk, t ∈ Z.

Using Taylor’s theorem (see any basic analysis book), it follows that for all t ∈ Z,

F (ak+1) = F (ak + tpk)

= F (ak) + tpkF ′(ak) +O(p2k)

≡ F (ak) + tpkF ′(ak) mod pk+1

So ak+1 is a solution mod pk+1 if

t = − F (an)
F ′(an)

mod p,

(which is well defined since F ′(ak+1) ≡ F ′(ak) 6≡ 0 mod p). Hence,

ak+1 = ak −
F (ak)

F ′(ak)
mod pk+1 (1.1)

uniquely satisfies the two conditions.

Thus, by induction, there exists unique solutions of F , an ≡ an+1 mod pn, for all n ∈ N. In
particular, set

b = lim
n→∞

an = (. . . , a2, a1) ∈ Zp,

then, b ≡ an mod pn and F (b) ≡ 0 mod pn for all n. Thus,

F (b) = 0 and b ≡ a1 ≡ a mod p.

Example 1.4.3
Hensel’s Lemma states that we can lift any equation from Z/pZ to Zp, with Equation 1.1 giving
an explicit formulae. For example, we show that F (X) = X2 − 10 has a solution in Z3. Clearly,
F (1) = −9 ≡ 0 mod 3 and F ′(1) = 2 6≡ 0 mod 3. Thus, by Hensel’s Lemma, there exists a
unique 3-adic integer, b ∈ Z3 such that b2 = 10 and b = 1 mod 3.
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Indeed, b = · · · 100121201 = (1, 1, 19, 46, 43264 . . .), that is,

10 ≡ 12 mod 3

10 ≡ 12 mod 32

10 ≡ (1 + 2 · 32)2 mod 33

10 ≡ (1 + 2 · 32 + 33)2 mod 34

...

Similarly, F (X) = X2 − 4 has a solution in Z3 since F (1) ≡ 0 mod 3 and F ′(1) 6≡ 0 mod 3.
Explicitly, b = · · · 222221 = (1, 7, 25, 79, 241, 727 . . .), where b2 = 4 and b ≡ 1 mod 3. Note also,
F (2) ≡ 0 mod 3 and F ′(2) 6≡ 0 mod 3, and indeed we can lift to −b = · · · 11112 ∈ Z3.

Here is a generalised version of Hensel’s Lemma.

Corollary 1.4.4
Let F (X) = c0 + c1X + c2X

2 + · + cnX
d ∈ Zp[X] a polynomial. Suppose there exists a p-adic

integer, a ∈ Zp, such that
|F (a)|p < |F ′(a)|2p.

Then there exists a unique p-adic integer b ∈ Zp such that

b ≡ a mod pvp(f(a))−vp(f
′(a)), and F (b) = 0.

Proof.
This proof is almost identical to the proof of Hensel’s Lemma, bar changing the powers of p in the
inductive step. See [1] page 14 for a step by step proof.

Corollary 1.4.5
Let p be an odd prime. Let c ∈ Z∗p. Then c is a square in Zp if and only if it is a nonzero square
mod p. In particular, if u ∈ Z/pnZ, for some n ∈ N, with u ≡ a2 mod p, for some a ∈ Z/pZ, then
u is a square mod pn.

Proof.
If c is a square in Z∗p, say c = b2, then vp(b)2 = vp(c) = 0 and b ∈ Z∗p. Thus, c ≡ b2 6≡ 0 mod p.

Conversely, write c ≡ a2 6≡ 0 mod p so that a 6≡ 0 mod p. Define

F (X) = X2 − c.

Then, F (a) ≡ 0 mod p and F ′(a) = 2a 6≡ 0 mod p (this is the only place we use p 6= 2). Hence,
by Hensel’s Lemma, F (X) has a root b ∈ Zp such that

c = b2 and c ≡ a mod p.

Lemma 1.4.6
Let m ∈ N such that gcd(m, p) = 1. Then, there exists a ∈ Z such that am ≡ 1 mod p and a 6≡ 1
mod p if and only if gcd(m, p − 1) 6= 1, and for any such a, the least positive integer m with that
property must be a divisor of p− 1.
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Proof.
Suppose there exists a ∈ Z such that am ≡ 1 mod p and a 6≡ 1 mod p. Then, the order of a
mod p in (Z/pZ)∗ must divide ϕ(p) = p − 1. Thus, gcd(m, p − 1) 6= 1, since a 6≡ 1 mod p. The
leastm satisfying the property divides the gcd, and hence divides p−1. Conversely, in a cyclic group
of order p− 1, there is an non-identity element of order dividing p− 1.

Proposition 1.4.7
Qp is not algebraically closed.

Proof.
Let gcd(m, p) = 1. Suppose there is a mth root of unity, say ω 6= 1. Then, then ωm − 1 = 0 and
|ω|p = 1 > 0, and hence ω ∈ Zp. Now let a ≡ ω 6≡ 1 mod p, so that am ≡ 1 mod p. By the
previous lemma, gcd(m, p − 1) 6= 1. That is, if we choose m 6= 1 such that gcd(m, p − 1) = 1,
ω ≡ 1 mod p. Then, by Hensel’s Lemma, this lifts to a solution in Zp, but by uniqueness, this must
be 1. Hence, the only root of F (X) = Xm − 1 in Qp is 1. Suppose for a contradiction that Qp is
algebraically closed, then

F (X) = Xm − 1 = (X − 1)m.

It is clear that for ever p, there is a m > 1 satisfying the above conditions (just choose m to be the
next prime after p, which is odd). Then, expanding this out,

(X − 1)m =
m∑
i=0

(
m

i

)
Xi(−1)m−i,

where
(
m
i

)
is the binomial coefficient. Then, we had the equality

m−1∑
i=1

(
m

i

)
Xi(−1)m−i = 0,

for every X . Thus, the left hand side must be the 0 function, meaning that each monomial must
vanish. Thus each

(
m
i

)
= 0, which is clearly a contradiction. Hence, not all mth roots of unity are in

Qp and thus, Qp is not algebraically closed.

Proposition 1.4.8
For odd prime p, the (p− 1)th roots of unity are roots of unity of Qp. If p = 2, then ±1 are roots of
unity.

Proof.
Let p be odd. Consider F (X) = Xp−1 − 1. Let a ∈ {1, 2, . . . , p − 1}, then F (a) ≡ 0 mod p and
F ′(a) ≡ (p− 1)ap−2 6≡ 0 mod p. Hence by Hensel’s Lemma, this lifts to a solution, say ωa in Zp.
Thus, each a lifts to a unique ωa, in particular all p− 1 of these (p− 1)th roots of unity are in Qp.

If p = 2, then consider F (X) = X2 − 1. F (−1) ≡ 0 mod p and F ′(−1) 6≡ 0 mod p. Hence, this
lifts to a solution in Z2. Similarly, so does 1.
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Remark 1.4.9
It is possible to show that these are the only roots of unity. See [2] page 114 for more details. This
requires more background and will be an interesting topic of future research.

Proposition 1.4.10
Let p 6= q primes. Then Qp is not isomorphic to Qq.

Proof.
Wlog suppose p > q (so p 6= 2). Let m ∈ N and m | p − 1, and m - q − 1 (e.g. m = p − 1). Then,
there is a m-th root of unity, ω 6= 1, in Qp. Suppose for a contradiction there is an isomorphism,
ϕ : Qp → Qq. Then, ϕ(ω) ∈ Qq is a m-th root of unity. Thus, ϕ(ω)m = 1, and ϕ(ω)p−1 ≡ 1
mod p. Since ϕ(ω) 6= 1, m | p− 1, a contradiction. Hence Qp 6∼= Qq.

Recall that in R, a series cannot be rearranged without affecting the sum. In fact, if the series does
not converge absolutely, it can be shown that there exists a rearrangment convering to any element in
R (refer to any basic real analysis textbook).

Proposition 1.4.11
Let {an ∈ Qp : n ∈ N} be a sequence with limn→∞ an = 0, and (a′n) a rearangement of (an). Then,
limn→∞ a

′
n = 0 and

∑∞
n=1 an =

∑∞
n=1 a

′
n.

Proof.
First note that, since (an) converges to zero, any rearangment must converge to zero. Define the N -th
partial sums as SN =

∑∞
N=1 an and S′N =

∑∞
N=1 a

′
n, and let A = limm→∞ Sm Then, let ε > 0,

then there exists N ∈ N such that for any m > N , |am|p < ε, |a′m|p < ε, |A − SN |p < ε. Now
define,

TN = {ai : |ai|p ≥ ε, i ≤ m}, and T ′N = {a′i : |a′i|p ≥ ε, i ≤ m},

and define the sums of the elements in RN (resp. T ′N ) as R′N (resp. R′N ). Since we assumed that
|am|p < ε and |a′m|p < ε, it is clear that Tm = T ′m, and hence RN = R′N . Now,

|SN −RN |p =

∣∣∣∣∣∣
∑
|ai|p<ε

ai

∣∣∣∣∣∣
p

≤ max{|ai|p : |ai|p < ε} < ε.

Similarly, |S′N −R′N |p < ε. It follows that,

|A− S′N |p ≤ |A− SN |+ |SN − S′N |p < ε+ |SN −RN |p + |RN −R′N |p + |R′N − S′N |p < 3ε.

Since ε was arbitary, it follows that limN→∞ S
′
N = A, and thus,

∑∞
n=1 an =

∑∞
n=1 a

′
n.



Chapter 2

Hasse-Minkowski Theorem

In this chapter, we assume that the characteristic of k is not 2.

2.1 Motivation

We already know from basic theory that if a polynomial in n variables has integer solutions, then
it has solutions in Z/pZ for all p. From what we have already done, we can also extend this to if
a polynomial has rational solutions, it has solutions in Qp for all p. In this section, we study the
converse.

Example 2.1.1
Let F (X) = X2 − 5X + 1. Then F has no roots in Z since there are no roots in Z/2Z. To see this
reduce F modulo 2:

F (X) = X2 +X + 1 mod 2.

It is easy to check that neither 0 nor 1 is a root.

Example 2.1.2
Let F (X,Y ) = 3X4−5Y 2+15X2−25. But, reducing mod 3 gives us Y 2 = 1 and reducing mod 5
gives us X4 = 0. In both cases, there is a solution, hence we still don’t know anything. But what if
we consider Q5? Suppose for a contradiction that (x, y) is a root of F . Considering the valuation of

5y2 = 3x4 + 15x2 − 25,

with v5(x) = a and v5(y) = b,

vp(5y
2) = 2b+ 1, and vp(3x

4 + 15x2 − 25) ≥ min(4a, 2a+ 1, 2).

Note that the valuation on both sides must be equal. Since the left is odd, so must the right, and so,
vp(3x

4 + 15x2 − 25) = min(4a, 2a+ 1, 2) = 2a+ 1. But, if a ≥ 1, min(4a, 2a+ 1, 2) = 4 and if
a < 1, min(4a, 2a+1, 2) = 2, a contradiction. Hence, F has no solutions in Q5 and thus no rational
solutions.

2.2 Background

2.2.1 Quadratic Forms

Definition 2.2.1
A quadratic form in k[X1, X2, ..., Xn] is a homogeneous polynomial of degree 2 in n variables.

17
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Recall that, after a change of variables, any quadratic form can be written in the form

F = a1X
2
1 + · · ·+ anX

2
n, ai ∈ k∗.

Proposition 2.2.2
If k is a finite field, then any quadratic form over k in at least 3 variables has a non-zero root.

Proof.
This follows from the Chevalley-Warning theorem (see [1] page 5) since the degree of a quadratic
form is 2.

Definition 2.2.3
A element of Qm

p is called primitive if one of the coordinates is invertible.

Proposition 2.2.4
Let F ∈ Zp[X1, . . . , Xm] be a homogeneous polynomial with coefficients in Zp. Then if F has a
non-zero solution in Qm

p , then it has a primitive zero in Zmp .

Proof.
Let (x1, . . . , xm) ∈ Qm

p be a non-zero of F . Let

y = p−mini{vp(xi)}(x1, . . . , xm).

Then, y ∈ Zmp is a primitive zero of F .

2.3 Squares in Q∗p
Proposition 2.3.1
Let p be an odd prime and x = pnu ∈ Q∗p with n ∈ Z and u ∈ Z∗2, then x is a square inQ∗p if and only
if n is even and

(
u
p

)
= 1. That is, u is a square modulo p.

Proof.
See [1] page 17.

Lemma 2.3.2
Let x = 2nu ∈ Q∗2 with n ∈ Z and u ∈ Q∗2, then x is a square in Q∗2 if and only if n is even and
u ≡ 1 mod 8.

Proposition 2.3.3
See [1] page 18.

Proposition 2.3.4
Q∗p2 is an open subgroup of Q∗p. That is, the squares of Q∗p form an open set.

Proof.
See [1] page 18.
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2.3.1 Legendre Symbol

It is expected that the reader has some knowledge on Legendre symbols. This section will only present
ideas needed to progress onto Hilbert symbols. All proofs are available in any reputable introductory
book on number theory (e.g. Section 3.2 of [3]). It also follows that the Legendre symbol can be
extended to the p-adic units in the obvious way (Definition 2.3.6).

Definition 2.3.5
Define the following functions for odd p.

ε(p) =
(p− 1)

2
mod 2 =

{
0 if p ≡ 1 mod 4

1 if p ≡ 3 mod 4

ω(p) =
(p2 − 1)

8
mod 2 =

{
0 if p ≡ 1, 7 mod 8

1 if p ≡ 3, 5 mod 8

Definition 2.3.6
The Legendre Symbol of a ∈ Z∗p,

(
a

p

)
=


1 if x2 ≡ a mod p has a solution,
0 if a ≡ 0 mod p,
−1 otherwise

.

Proposition 2.3.7 (Euler’s Criterion)
Let p be an odd prime. (

a

p

)
≡ a(p−1)/2 mod p.

Corollary 2.3.8
The Legendre symbol is linear. That is,(

ab

p

)
=

(
a

p

)(
b

p

)
Proposition 2.3.9 (

−1
p

)
= (−1)ε(p) =

{
1 if p ≡ 1 mod 4,
−1 if p ≡ 3 mod 4.(

2

p

)
= (−1)ω(p) =

{
−1 if p ≡ 1, 7 mod 8,
1 if p ≡ 3, 5 mod 8.

Proposition 2.3.10 (Quadratic Reciprocity)
Gauss’s Quadratic Reciprocity says that if p and q are distinct odd primes, then(

p

q

)
=

(
q

p

)
(−1)ε(p)ε(q) =

{
−
( q
p

)
if p ≡ q ≡ 3 mod 4,( q

p

)
otherwise.
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2.4 Hilbert Symbols

Definition 2.4.1
Let k∗ be the multiplicative group of k and let a, b ∈ k∗. Then the Hilbert symbol of a and b relative
to k is

(a, b) =

{
1 if aX2 + bY 2 = Z2 has a non-trivial solution, (x, y, z) ∈ k3

−1 otherwise.

In particular, if k = Qp, write (a, b)p.

Lemma 2.4.2
Let a, b ∈ k∗. Then (a, b) = 1 if and only if there exists x, y ∈ k such that a = x2 − by2.

Proof.
Suppose there exists x, y ∈ k such that a = x2 − by2. Then, clearly, (1, y, z) is a solution to
aX2

1 + bX2
2 = X2

3 . Thus, (a, b) = 1.

Conversely, suppose (a, b) = 1. Then aX2 + bY 2 = Z2 has a non-trivial solution, say (x, y, z). If
x = 0, then b = z2

y2
is a square. Then,

a =

(
a+ 1

2

)2

− b
(
y(a− 1)

2z

)2

.

If x 6= 0, then

a =
( z
x

)2
− b

(y
x

)2
.

Lemma 2.4.3
For b ∈ k∗, {x2 − by2 6= 0 : x, y ∈ k} is a subgroup of k∗.

Proof.
If b is a square, then for all a ∈ k∗,

a =

(
a+ 1

2

)2

− b
(
a− 1

2
√
b

)2

∈ {x2 − by2 6= 0 : x, y ∈ k}.

Thus, {x2 − by2 6= 0 : x, y ∈ k} = k∗.

On the other hand, suppose b is not a square. Let a1, a2 ∈ {x2 − by2 6= 0 : x, y ∈ k}. Write
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a1 = x21 − by21 and a2 = x22 − by22 . Then,

a1a2 = (x21 − by21)(x22 − by22)
= x21x

2
2 − b(x21y22 + x22y

2
1) + b2y21y

2
2

= x21x
2
2 + 2bx1x2y1y2 + b2y21y

2
2 − b(x21y22 + 2x1x2y1y2 + x22y

2
1)

= (x1x2 + by1y2)
2 − b(x1y2 + x2y1)

2 ∈ {x2 − by2 6= 0 : x, y ∈ k},

and a−11 =
a1
a21

=
x21 − by21

a21

=

(
x1
a1

)2

− b
(
y1
a1

)2

∈ {x2 − by2 6= 0 : x, y ∈ k}.

It follows from the two-step subgroup test that {x2 − by2 6= 0 : x, y ∈ k} ≤ k∗.

Remark 2.4.4
Let b ∈ k∗, B = {x2 − by2 6= 0 : x, y ∈ k}. Then by the previous two lemmas, if a ∈ k∗, then
(a, b) = 1 if and only if a ∈ B. Note also that b ∈ B.

Proposition 2.4.5
Let a, b, c ∈ k∗. The following are properties of the Hilbert symbol.

1. (a, 1) = 1

2. (a, b) = (b, a) and (a, b2) = 1

3. (a,−a) = 1 and (a, 1− a) = 1

4. (a, b) = 1 =⇒ (ac, b) = (c, b)

5. (a, b) = (a,−ab) = (a, (1− a)b)
6. (a, a) = (a,−1)

Proof.

1. (0, 1, 1) is a solution to aX2 + Y 2 = Z2.

2. Clearly, the Hilbert symbol is commutative. Also, aX2 + b2Y 2 = Z2 has non-zero solution
(0, 1, b), so (a, b2) = 1.

3. aX2 − aY 2 = Z2 clearly has a solution, (1, 1, 0). Similarly, aX2 + (1− a)Y 2 = Z2 has the
solution, (1, 1, 1).

4. Let B be the group from Lemma 2.4.3. Then by assumption, a ∈ B. Then by properties of a
group, c ∈ B if and only if ac ∈ B. Hence, (ac, b) = (c, b).

5. By 3, (a,−a) = 1, thus using commutativity and the implication of 4, (a,−ab) = (a, b). The
second equality is similar.
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6. Let b = −a and c = −1. Then by 3, (a, b) = 1, and by 4, (a, a) = (a, bc) = (a, c) =
(a,−1).

Proposition 2.4.6
If k = R,

(a, b)∞ =

{
1 if either a or b are positive
−1 otherwise.

Proof.
If both a and b are negative, since there are no real solutions to z2 = −1, (a, b) = −1. Otherwise,
wlog consider a > 0. Then it follows (a, b) = 1, since setting z =

√
|b|, y = 1, there is a x such that

ax2 = |b| − b.

Theorem 2.4.7
Let k = Qp, for an odd prime p. Write a = pαu and b = pβv with u, v ∈ Z∗p. Then,

(a, b)p = (−1)αβε(p)
(
u

p

)β (v
p

)α
.

Proof.
First note that by 2.2.2, there is a non-zero root of uX2 + vY 2 − Z2 in Z/pZ. Thus by Hensel’s
Lemma, this lifts to Zp. Thus (u, v)p = 1. Now, obviously, from the formula, we only need to
consider α, β ∈ 0, 1. We consider the three cases for α and β.

1. α = 0, β = 0

The RHS is 1. (a, b)p = (u, v)p = 1.

2. α = 0, β = 1

The RHS is
(
v
p

)
. Since (u, v)p = 1, it follows from 4 of Proposition 2.4.5, (pu, v)p = (p, v)p.

If v is a square, then (p, v)p = 1 =
(
v
p

)
, otherwise if v is non-square, then vY 2 − Z2 has no

non-zero solutions mod p, thus pX2 + vY 2 − Z2 has no non-zero solutions in Qp. It follows
that (a, b)p = (pu, v)p = (p, v)p = −1.

3. α = 1, β = 1

The RHS is (−1)
p−1
2

(
u
p

)(
v
p

)
. Now, by 5 of Proposition 2.4.5, (pu, pv)p = (pu,−puv)p =

(pu,−uv)p. Thus, we can apply the previous case,

(a, b)p = (pu,−uv)p =
(
−uv
p

)
=

(
−1
p

)(
u

p

)(
v

p

)
= (−1)

p−1
2

(
u

p

)(
v

p

)
.
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Lemma 2.4.8
For p = 2, ε and ω are homomorphisms from Z∗2 to Z/2Z.

Proof.
For ε, it is suffice to check 1 and 3.

ε(1 · 1) = 0 = ε(1) + ε(1), ε(1 · 3) = 1 = ε(1) + ε(3), ε(3 · 3) = 0 = ε(3) + ε(3).

For ω we need to check a ∈ {3, 5} and b ∈ {1, 7}, which is similar to before,

ω(a2) = ω(b2) = 0, ω(ab) = 1, ω(3 · 5) = ω(1 · 7) = 0.

Theorem 2.4.9
Let k = Q2. Write a = 2αu and b = 2βv with u, v ∈ Z∗2. Then,

(a, b)2 = (−1)ε(u)ε(v)+αω(v)+βω(u).

Proof.
Again, from the formula, we only need to consider α, β ∈ 0, 1. We consider the three cases for α and
β.

1. α = 0, β = 0

Suppose one of u or v is 1 mod 4. Then the RHS is 1. Wlog suppose u ≡ 1 mod 4. Then if
u ≡ 1 mod 8, then u is a square (Proposition 2.3.2) and (u, v)2 = 1. Else, u ≡ 5 mod 8 and,
uX2 + vY 2 − Z2 has a non-zero root mod 8, (1, 2, x) with x = 1. Then by Corollary 1.4.4,
there is a solution in Q2. And (u, v)2 = 1.

Suppose both u and v are 3 mod 4. Then the RHS is −1. Suppose for a contradiction, X2 −
uY 2 − vZ2 has a non-zero solution, so X2 + Y 2 + Z2 has a non-zero solution mod 4. It is an
easy computation to see that the only root is (0, 0, 0), a contradiction. So, (u, v)2 = −1.

2. α = 1, β = 0

The RHS is (−1)ε(u)ε(v)+ω(v). If v ≡ 1 mod 8, v is a square (Proposition 2.3.2) and (2, v)2 =
1. If v ≡ 7 mod 8, 2X2+vY 2−Z2 has (1, 1, 1) as a solution mod 8, hence by Corollary 1.4.4,
this lifts to a solution in Q2. Hence (2, v)2 = 1.

Now, suppose (2, v)2 = 1, then, 2X2+vY 2−Z2 has a non-zero root, then by Proposition 2.2.4,
there is a primitive zero in Zp. In particular, at most one coordinates of the solution are divisible
by 2. Hence, there is a non-zero solution mod 2, say (x, y, z), with y2 ≡ z2 6≡ 0 mod 2.
Going back to Z/8Z, note that the only squares are 0, 1, 4, and so y2 ≡ z2 ≡ 1 mod 8, so
2X2 + v − 1 ≡ 0 mod 8. Computing all cases for X , it follows v ≡ 1, 7 mod 8.

It follows that (2, v)2 = 1 if and only if v ≡ 1, 7 mod 8. In other words, (2, v)2 = (−1)ω(v).
Now, by 4 of Proposition 2.4.5, if (2, v)2 = 1 or (u, v)2 = 1, (2u, v)2 = (2, v)2(u, v)2. If
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(2, v)2 = (u, v)2 = −1, then by the above and case 1, we must have that v ≡ 3 mod 8 and
u ≡ 3, 5 mod 8. Thus we have two cases, and it is an easy computation to show that in both
cases, (2u, v)2 = 1. Hence, in all cases, (2, v)2(u, v)2 = (2u, v)2 also. The correctequation
follows by combining the above together.

3. α = 1, β = 1

The RHS is (−1)ε(u)ε(v)+ω(v)+ω(u). Now, we know that by 5 of Proposition 2.4.5 and the
previous case (since −uv is a unit),

(2u, 2v) = (2u,−4uv) = (2u,−uv) = (−1)ε(u)ε(−uv)+ω(−uv).

Now, noting that ε(−1) = 1, ω(−1) = 0, and ε(u)(1 + ε(u)) = 0, it follows that

ε(u)ε(−uv) + ω(−uv) = ε(u)ε(v) + ω(v) + ω(u),

since ε and ω are homomorphisms (Lemma 2.4.8). The result follows.

Theorem 2.4.10
The Hilbert symbol on R and Qp is bilinear. That is,

(a1a2, b) = (a1, b)(a2, b).

Proof.
This is clearly true in R since a1a2 is positive if both a1 and a2 have the same sign, and negative
otherwise. Now, write a1 = pα1u1, a2 = pα2u2 and b = pβv with u, v ∈ Z∗p. Let us consider p 6= 2.
Then since the Legendre symbol is linear,

(a1a2, b)p = (−1)(α1+α2)βε(p)

(
u1u2
p

)β (v
p

)α1+α2

= (−1)α1βε(p)

(
u1
p

)β (v
p

)α1

(−1)α2βε(p)

(
u2
p

)β (v
p

)α2

= (a1, b)p(a2, b)p.

Similarly, for p = 2, since ε and ω are homomorphisms (2.4.8),

(a1a2, b)2 = (−1)ε(u1u2)ε(v)+(α1+α2)ω(v)+βω(u1u2)

= (−1)ε(u1)ε(v)+α1ω(v)+(β)ω(u1) + (−1)ε(u2)ε(v)+α2ω(v)+(β)ω(u2)

= (a1, b)2(a2, b)2.

Theorem 2.4.11 (Hilbert’s Product Formula)
If a, b ∈ Q∗. Then, (a, b)p = 1 for almost every prime p, and

(a, b)∞
∏

prime p

(a, b)p = 1.
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Proof.
Since the Hilbert symbol is bilinear, it is sufficient to consider a, b primes or −1, since (1,−1) = 1,
and any non-prime n is a product of primes and −1. Now, consider 3 cases.

1. Let a = b = −1. Clearly, (−1,−1)∞ = (−1,−1)2 = 1. For p 6= 2, (−1,−1)p = 1. Hence,

(−1,−1)∞
∏

prime p

(−1,−1)p = 1.

2. Now consider a a prime, and b = −1.

(a) If a = 2, clearly, (2,−1)∞ = (2,−1)p = 1 by considering the solution (1, 1, 1). Hence,

(2,−1)∞
∏

prime p

(2,−1)p = 1.

(b) Now suppose a 6= 2. If p 6= 2, p 6= a, then α = β = 0 and (a,−1) = 1 by Theorem 2.4.7.
If p = 2 or p = a, then (a,−1)2 = (a,−1)p = (−1)ε(a). Hence,

(a,−1)∞
∏

prime p

(a,−1)p = (a,−1)2(a,−1)a = (−1)2ε(a) = 1.

3. Now suppose both a and b are primes.
(a) If a = b, then by 6 of Proposition 2.4.5, this reduces to case 2. Thus, consider a 6= b.
(b) Suppose a = 2. If p 6= 2 and p 6= b, then by Theorem 2.4.7 α = β = 0, and (2, b) = 1. If

p = 2, by Theorem 2.4.9, α = 1 and β = 0. It follows that (2, b)2 = (−1)ω(b). If p = b,
by Theorem 2.4.7, u = 2, α = 0 and β = 1. It follows that (2, b)p =

(
2
b

)
= (−1)ω(b).

Hence,
(2, b)∞

∏
prime p

(2, b)p = (2, b)2(2, b)b = (−1)2ω(b) = 1.

(c) Suppose a 6= 2 and b 6= 2. If p 6= 2, p 6= a and p 6= b, then by Theorem 2.4.7 α = β = 0,
and (a, b) = 1. If p = 2, by Theorem 2.4.9 with α = β = 0, (a, b)2 = (−1)ε(a)ε(b). If
p = a or p = b, (a, b)a =

(
b
a

)
and (a, b)b =

(
a
b

)
. Hence, by Quadratic Reciprocity

(a, b)∞
∏

prime p

(a, b)p = (−1)ε(a)ε(b)
(a
b

)( b
a

)
= (−1)2ε(a)ε(b) = 1.

Corollary 2.4.12
Note that Hilbert’s Product Formula is equivalent to Quadratic Reciprocity. Indeed, the previous
theorem gives the forward direction.
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Proof.
Conversely, suppose Hilbert’s Product Formula holds. Let a, b be distinct odd primes. Then, following
case 3c, we have that

(a, b)∞
∏

prime p

(a, b)p = (a, b)2(a, b)a(a, b)b = (−1)ε(a)ε(b)
(a
b

)( b
a

)
= 1.

It follows that (a
b

)( b
a

)
= (−1)ε(a)ε(b).

Remark 2.4.13
The Hilbert Symbol and Hilbert Product Formula can also be extended to number fields (finite field
extensions of Qp). The product formula and quadratic reciprocity are both examples of reciprocity
laws. Other reciprocity laws include Kummer reciprocity and Artin reciprocity. These are closely
related to Hilbert’s ninth problem1, an unsolved problem in mathematics. The problem is to find
a general reciprocity law for a general Hilbert symbol in a number field. David Hilbert stated that
solving such a problem will lead to significant progress in the theory of prime power roots of unity.

In the 1920s, Emil Artin made a notable advancement. He established the Artin reciprocity law, which
not only opens up its own field of research, but is able to imply all other currently known reciprocity
laws. It is also used in the proof of Chebotarev’s density theorem, a generalisation of Dirichlet’s
theorem. It will be interesting to further study this area.

Lemma 2.4.14 (Chinese Remainder Theorem)
Let a1, . . . , an ∈ Z and m1, . . . ,mn ∈ Z pairwise coprime. Then, there exists a ∈ Z such that

a ≡ ai mod mi, for all i.

Proof.
See any introductory book on algebra.

Proposition 2.4.15 (Approximation Theorem)
Let V = {v : v is prime or∞} and S ⊂ V finite. The image of Q in

∏
v∈S Qv is dense in this

product (for the product topology of those Qv).

Proof.
Let S = {∞, p1, . . . , pn}, where each pi is a distinct prime. Let

(x∞, x1, . . . , xn) ∈ R×Qp1 × · · · ×Qpn =
∏
v∈S

Qv.

By clearing denominators, we can assume each xi ∈ Z2pi for i ∈ {1, . . . , n}. Now we will show that
there is a rational number arbitrarily close to each xi. Let ε > 0 and N > 0. Then, by the Chinese

1See https://mathcs.clarku.edu/˜djoyce/hilbert/problems.html for an English version of all
Hilbert problems.

https://mathcs.clarku.edu/~djoyce/hilbert/problems.html
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Remainder Theorem, with mi = pNi pairwise coprime, there existsx0 ∈ Z such that for all i, x0 ≡ xi
mod pN , thus

vpi(x0 − xi) ≥ N.

Now, choose q ≥ 2 a prime number that is coprime to all pi. Then, { a
qm : a ∈ Z, m ≥ 0} is dense in

R (see any basic book on topology or analysis). Thus, we may choose u = a
qm such that

|x0 − x∞ + upN1 · · · pN | ≤ ε.

Now, set x = x0 + upN1 . . . pNn . It follows

|x− x∞| ≤ ε, and vpi(x− xi) ≥ N for i ∈ {1, . . . , n}.

The result follows. (Note that the greater vp is, the smaller | · |p is.)

Lemma 2.4.16 (Dirichlet’s Theorem)
If a,m ∈ Z are coprime, there are infinitely many primes p such that p ≡ a mod m.

Proof.
This is Dirichlet’s Theorem. See Chapter 3. Note that the proof does not require anything past this
point, and thus there is no circular argument.

Theorem 2.4.17
Let I ⊂ N finite and V = {v : v is prime or∞}, {ai ∈ Q∗ : i ∈ I} and

{εi,v ∈ {−1, 1} : i ∈ I, v ∈ V }.

Then, there exists x ∈ Q∗ with (ai, x)v = εi,v (for all v ∈ V and i ∈ I) if and only if all the following
conditions are satisfied.

1. Almost all the εi,v are equal to 1,

2. For all i ∈ I ,
∏
v∈V εi,v = 1,

3. For all v ∈ V , there exists xv ∈ Q∗v such that (ai, xv)v = εi,v for all i ∈ I .

Proof.
For the forward direction, note that conditions 1 and 2 follow directly from Hilbert’s Product Formula.
Condition 3 follows if we let xv = x.

Conversely, suppose all three conditions hold. By clearing denominators (multiplying by squares to
conserve the Hilbert symbol), we can assume each ai ∈ Z∗. Define the following.

S = {∞, 2, p : p is prime and p | ai, for some i}

T = {v ∈ V : εi,v = −1, for some i ∈ I}

We consider two cases.
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S ∩ T = ∅. Let
a =

∏
l∈T\{∞}

l, and m = 8
∏

l∈S\{2,∞}

l.

Since S ∩ T = ∅, a and m are relatively prime, and by Dirichlet’s Theorem, there exists a prime
p ≡ a mod m (in fact infinitely many), with p /∈ S ∪ T . We claim that x = ap gives (ai, x)v = εi,v
for all i ∈ I and v ∈ V .

If v ∈ S, εi,v = 1 since v /∈ T . If v = ∞, then since x > 0, (ai, x)∞ = 1. If v = l a prime, then
x ≡ a2 mod m. Note that x, a ∈ Z∗p. If l = 2, x ≡ a2 mod 8 and by x ≡ 1 mod 8 (just check
every possible a modulo 8) and by Proposition 2.3.2, x is a square in Q∗2. Similarly, if l 6= 2, x ≡ a2

mod l and by Proposition 2.3.1, x is a square in Q∗l . Hence, in all cases (ai, x)v = 1.

Now, suppose v = l /∈ S. Then since l 6= 2,

(ai, b)l =
(ai
l

)
vl(b) for all b ∈ Q∗l , (2.1)

which follows from Theorem 2.4.7 (since ai is a unit). If l /∈ T ∪ {p}, and since x ∈ Z∗p, vl(x) = 0.
Thus, by Equation 2.1, (ai, x)l = 1 = εi,l. Now, let l ∈ T , so vl(x) = 1. Then, condition 3 says that
for all i ∈ I , there is a xl ∈ Q∗l with (ai, xl)l = εi,l. Since l ∈ T , one of εi,l is −1, so, vl(xl) ≡ 1
mod 2 (xl has odd powers of l). It follows that for all i ∈ I ,

(ai, x)l =
(ai
l

)
= (ai, xl)l = εi,l.

Now, consider l = p. Then, by Hilbert’s Product Formula and condition 2,

(ai, x)p =
∏

v∈V \{p}

(ai, x)v =
∏

v∈V \{p}

εi,l = εi,p

Hence, (ai, x)v = εi,l for every v ∈ V and i ∈ I .

S ∩ T 6= ∅. By Proposition 2.3.4, the squares of Q∗v are open in Q∗v. By the Approximation Theorem,
the image of Q meets the open set, and hence there is a x′ ∈ Q∗ such that x′

xv
is a square in Q∗v for all

v ∈ S. So for all v ∈ S,
(ai, x

′)v = (ai, xv)v = εi,v.

Let ηi,v = εi,v(ai, x
′)v, where (ηi,v ∈ {1,−1} : i ∈ I, v ∈ V ) satisfies the three conditions.

Now since ηi,v = 1 if v ∈ S, we are back in the first case. Thus, there exists y ∈ Q∗p1 such that
(ai, y)v = ηi,v for all i ∈ I and v ∈ V . Setting x = yx′ gives (ai, x)v = εi,l for every v ∈ V and
i ∈ I .

2.5 Invariants

Definition 2.5.1
Let F = X2

1 + a2X
2
2 + · · · + anX

2
n be a quadratic form over k, with each ai ∈ k∗. Then, the

discriminant of F is
d(F ) = a1 · · · an.
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The Hasse invariant is
ε(F ) =

∏
i<j

(ai, aj).

Proposition 2.5.2
Let n ∈ N \ {1, 3}. Let F be a quadratic form in k[X1, . . . , Xn], a ∈ k∗/k∗2. Let d = d(F ),
ε = ε(F ). Then F − a has a non-zero root if and only if

1. n = 1 and a = d (in k∗/k∗2),

2. n = 2 and (a,−d) = ε,

3. n = 3 and either a 6= −d or a = −d and (−1,−d) = ε, or

4. n ≥ 4.

Proof.
Note that we will only use the case n = 2 and n ≥ 4 in the proof of the Hasse-Minkowski Theo-
rem. See [1] pages 35-38 for a proof of this theorem, and also a discussion on why these are called
invariants.

Lemma 2.5.3
Let F be a quadratic form. Then for any x ∈ kn∗,

F (x) =
F (2x)− 2F (x)

2
.

Proof.
Write F = a1X

2
1 + · · ·+ anX

2
n and x = (x1, . . . , xn), then

F (2x) = 4a1x
2
1 + · · ·+ 4anx

2
n = 4F (x).

Rearranging gets the desired result.

Lemma 2.5.4
Let F be a quadratic form. Then for any x,y ∈ kn∗ and b ∈ k,

F (bx+ y) = b2F (x) + F (y) + b(F (x+ y)− F (x)− F (y)).

Proof.
Write F = a1X

2
1 + · · ·+ anX

2
n, x = (x1, . . . , xn), and y = (y1, . . . , yn), then

F (x+ y) = a1(x
2
1 + 2x1y1 + y21) + · · ·+ an(x

2
n + 2xnyn + y2n)

= F (x) + F (y) + 2(a1x1y1 + · · ·+ anxnyn).

Similarly, F (bx + y) = b2F (x) + F (y) + 2b(a1x1y1 + · · · + anxnyn). Equating and rearranging
gets the first result.

Proposition 2.5.5
Let F a non-zero quadratic form with a non-zero root. Then, F is onto k.
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Proof.
Suppose F (x) = 0 with x ∈ kn∗. Let y ∈ kn∗ such that F (x + y) 6= F (y) (which exists since
x 6= 0). Let a ∈ k and define

b =
a− F (y)

F (x+ y)− F (y)
∈ k.

Then using Lemma 2.5.3 and Lemma 2.5.4,

F (bx+ y) = b2F (x) + F (y) + b(F (x+ y)− F (x)− F (y))
= 0 + F (y) + (a− F (y))
= a.

Since a was arbitrary, and we constructed bx+ y ∈ kn∗, it follows that F (bx+ y) = a, and thus F
is onto.

Corollary 2.5.6
Let G,H be non-zero quadratic forms in at least one variable in k[X1, . . . , Xn] and k[Y1, . . . , Ym]
respectively, and let F = G−H . Then, F has a non-zero root if and only if there exists a ∈ k∗ such
that G− a and H − a both have non-zero roots.

Proof.
The converse is obvious. Suppose F has a non-zero root, say (x,y). Let a = G(x) = H(y). If
a 6= 0, we are done. Otherwise, suppose a = 0. Then, G(x) = 0, and by Proposition 2.5.5, G is onto.
It follows that there is b ∈ k∗ such that H− b has a non-zero root, and that b is in the image of G.

2.6 Hasse-Minkowski Theorem

Theorem 2.6.1 (Hasse-Minkowski)
Let F be a nondegenerate quadratic form over Q. Then F has a non-trivial zero in Q if and only if it
has non-trivial solutions in Qp and R, for all p.

Proof.
The forward direction is obvious. Suppose that F has non-trivial zeros in Qp and R. Without loss of
generality write

F = X2
1 + a2X

2
2 + · · ·+ anX

2
n, ai ∈ Z∗and each ai square free.

We can set a1 = 1 since F has a solution if and only if a−11 F has a solution. We can multiply through
by denominators of each ai and hence we can consider integer coefficients. And if m is a square
factor of ai, change Xi to m−1/2Xi. Consider 4 cases of n: 2, 3, 4, and ≥ 5.

1. n = 2

We have F = X2
1 − a2X2

2 with a2 square free. Since F has a non-trivial root in R, a2 > 0.
Write

a2 =
∏
p prime

pvp(a2), vp ∈ {0, 1}.
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Let (x1, x2) be a non-zero root of F in Qp. If x2 = 0 then so is x1, hence x2 6= 0 and we must

have that a2 =
x21
x22

a square in Qp, and so vp(a2) = 0 for all p. Hence, a2 = 1 in Q, and F has
a zero in Q.

2. n = 3

Write F = X2
1 − a2X2

2 − a3X2
3 , where a2 and a3 are non-zero square free integers. Wlog

suppose 0 < |a2|∞ ≤ |a3|∞. We use strong induction on the value m = |a2|∞ + |a3|∞ ≥ 2.

Let m = 2. Then, |a2|∞ = |a3|∞ = 1, and so F = X2
1 ±X2

2 ±X2
3 . There are four cases, each

satisfying the hypothesis.
(a) F = X2

1 +X2
2 +X2

3 has no non-zero solutions in R.
(b) F = X2

1 −X2
2 +X2

3 has solution (1, 1, 0).
(c) F = X2

1 −X2
2 −X2

3 has solution (1, 1, 0).
(d) F = X2

1 +X2
2 −X2

3 has solution (1, 0, 1).

Now, suppose m > 2 and that the hypothesis is true for all smaller m. Note that |a3|∞ ≥ 2.
Since a3 is square free, write

a3 = ±p1 · · · pk = ±
∏
p prime

pvp(a3), vp ∈ {0, 1}.

We aim to show that a2 is a square mod a3 (by the Chinese Remainder Theorem, it is sufficient
to show a2 is a square mod pi for all i ∈ {1, . . . , k}). Let i ∈ {1, . . . , k} and consider p = pi.
If a2 ≡ 0 mod p, then clearly, a2 is a square mod p. Otherwise, a2 is a p-adic unit. By
assumption, there is a (x1, x2, x3) ∈ Q3

p a non-zero root of F . Wlog, by Proposition 2.2.4,
(x1, x2, x3) is primitive. Since p | a3,

x21 = a2x
2
2 mod p.

If x2 = 0 mod p, then so is x1, so p | a3x23. Since vp(a3) = 1, it follows p | x3, contradicting
primitivity. Hence, x2 6= 0 mod p. Thus,

a2 =
x21
x22

mod p,

in particular, a2 is a square mod a3. Write a2 = b2 mod a3 where |b|∞ ≤ |a32 |∞. Then, there
exists c ∈ Z such that

b2 = a2 + ca3.

By Lemma 2.4.2, a2 = b2 − ca3 implies (a2, ca3) = 1. Thus, by bilinearity,

(a2, c) = (a2, a3), (2.2)

where the Hilbert symbols can be in any field (in particular, Qp, R, and Q). Since (a2, a3)∞ =
(a2, a3)p = 1, it follows that X2

1 − a2X2
2 − cX2

3 has a non-zero root in Qp and R. Now, write
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c = c′u2, where c′ and u are integers and c′ is square free. Then, X2
1 − a2X2

2 − c′X2
3 has a

non-zero root in Qp and R. Now note that

|c′|∞ ≤ |c|∞ =

∣∣∣∣b2 − a2a3

∣∣∣∣
∞
≤
∣∣∣∣ b2a3
∣∣∣∣
∞

+

∣∣∣∣a2a3
∣∣∣∣
∞
≤ |a3|∞

4
+ 1 < |a3|∞, since |a3|∞ ≥ 2.

Since |a2|∞ + |c′|∞ < m, it follows from the induction hypothesis, X2
1 − a2X2

2 − c′X2
3 has a

non-zero root in Q, and so X2
1 − a2X2

2 − cX2
3 has a non-zero root in Q. Thus by Equation 2.2,

X2
1 − a2X2

2 − a3X2
3 has a non-zero root in Q.

3. n = 4

Write F = X2
1+a2X

2
2−a3X2

3−a4X2
4 , where a2, a2, and a3 are non-zero square free integers.

Then by Corollary 2.5.6, for Qp (respectively R) there exists quadratic forms, G = X2
1 +a2X

2
2

and H = a3X
2
3 + a4X

2
4 such that there is a xp ∈ Q∗p (resp. x∞ ∈ R) with G− xp and H − xp

both having non-zero roots. Now the invariants of G and H are,

d(G) = a2, ε(G) = (1, a2),

d(H) = a3a4, ε(H) = (a3, a4).

Thus, by Proposition 2.5.2 case 2,

(xp,−a2)p = (1, a2)p, and (xp,−a3a4)p = (a3, a4)p.

Now by Hilbert’s Product Formula,

(1, a2)∞
∏
p prime

(1, a2)p = (a3, a4)∞
∏
p prime

(a3, a4)p = 1

It follows that the conditions for Theorem 2.4.17 are satisfied, thus, there exists x ∈ Q∗ such
that

(x,−a2)p = (1, a2)p, and (x,−a3a4)p = (a3, a4)p , ∀p ∈ {p : p is prime or∞}.

Now, the quadratic forms, G−xZ2 and H −xZ2 both have non-zero roots in Qp and R (again
by Proposition 2.5.2 case 2). By the proof for n = 3, it follows that they also have non-zero
roots in Q. Recalling that F = G−H , F also has a non-zero root in Q.

4. n ≥ 5

Now we use induction on n. Write F = F = X2
1+a2X

2
2+· · ·+anX2

n, with each ai square free.
As in the n = 4 case, split F into two quadratic forms, F = G−H , where H = X2

1 + a2X
2,

and G = −(a3X2
3 + · · ·+ anx

2
n). Let

S = {2, p,∞ : ∃i ≥ 3, vp(ai) 6= 0, p prime}.
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This set is finite since n and each ai are finite. By assumption, for every v ∈ S, F − v has a
non-zero root in each Qv, so by Corollary 2.5.6, there is a bv ∈ Q∗v such thatH−bv andG−bv
both have non-zero roots in Qv. In addition, there exists xvi ∈ Qp, i ∈ {1, . . . , n} such that

H(xv1, x
v
2) = G(xv3, . . . , x

v
n) = bv.

By Proposition 2.3.4, the squares of Q∗p form an open set. And by the Approximation Theorem,
there exists x1, x2 ∈ Q such that if b = H(x1, x2), then b

bv
∈ Q∗v2 for all v ∈ S. Now, consider

the quadratic form F1 = bZ2 − G, where Z is another variable. If v ∈ S, G − bv has a non-
zero root in Qv. By Proposition 2.5.2 case 4 (since G has n − 1 ≥ 4 variables), and because
b
bp
∈ Q∗v2, G− b also has a non-zero root in Qv. Thus, F1 has a non-zero root for all v ∈ S.

If v 6∈ S, then all coefficients, a3, . . . an of G are v-adic units. Thus, the discriminant of G in
Qv, dv(G), is also a v-adic unit. Since v 6= 2, εv(G) = 1. It follows that F1 has non-zero roots
in Qv for v 6∈ S.

Thus, we have that F1 has a non-zero root in Qv for every v ∈ V . It follows by the induction
hypothesis that F1 must have a non-zero root in Q. Thus,G−a has a root, and F has a non-zero
root in Q.

Remark 2.6.2
Although we are converting a problem in Q to infinitely many problems in Qp, it is far easier to solve
something in Qp since we have Hensel’s Lemma (the p-adic analogue of Newton’s method).

Example 2.6.3
We will prove that

F (X,Y, Z) = X2 + 3Y 2 − 7Z2

has a non-zero rational root. Note indeed, (2, 1, 1) is a solution, though we shall show this using
Hasse-Minkowski and Hensel’s Lemma. We consider a few cases.

1. In R

Clearly, we have a solution since not all coefficients have the same sign (concretely, setting

X = 0, Y = 1, we have Z =
√

3
7 ).

2. In Qp for p 6∈ {2, 3, 7}

Then by Proposition 2.2.2, there is a non-zero root in Z/pZ. Call this (x, y, z), so that

x2 + 3y2 − 7z2 ≡ 0 mod p.

Thus, at least one of x, y, z must not be divisible by p. Suppose that p - x. Now let G(X) =
X2 + 3y2 − 7z2, so that G′(X) = 2X . Note that G(x) ≡ 0 mod p, and G′(x) 6≡ 0 mod p.
Now, by Hensel’s Lemma, x lifts to a x′ ∈ Qp, and (x′, y, z) is a non-zero root of F in Qp. If
p | x, then either p - y or p - z, and we arrive at a similar conclusion using the same argument.
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3. In Q2

Consider the non-zero (x, 1, 0), where x = 1. Let

G(X) = F (X, 1, 0) = X2 + 3.

Then, G′(X) = 2X , G(x) ≡ 0 mod 4, and G′(x) 6≡ 0 mod 4. Then by Corollary 1.4.4,
there is a non-zero root of G in Z/2nZ, for all n > 2. Noting that x is also a non-zero root of
G in Z/2Z, it follows that there must be a non-zero root of F in Q2.

4. In Q3

Consider the non-zero (x, 0, 1), where x = 1. Let

G(X) = F (X, 0, 1) = X2 − 7.

Then, G′(X) = 2X , G(x) ≡ 0 mod 3, and G′(x) 6≡ 0 mod 3. Then, by Hensel’s Lemma,
F this lifts to a the non-zero solution in Q3.

5. In Q7

Similarly, consider the non-zero (x, 1, 0), where x = 2. Let

G(X) = F (X, 1, 0) = X2 + 3.

Then, G′(X) = 2X , G(x) ≡ 0 mod 7, and G′(x) 6≡ 0 mod 7. Then, by Hensel’s Lemma,
F this lifts to a the non-zero solution in Q3.

Hence, F has a non-zero root in all Qp and R, and thus, by Hasse-Minkowski, F has a non-zero root
in Q.

We now give a few tools to help further simplify the problem of the existence of solutions in Qp.

Proposition 2.6.4
Let F be a quadratic form over Q in n ≥ 3 variables. Write

F = a1X
2
1 + a2X

2
2 + · · ·+ anX

2
n,

with ai non-zero square free integers as before. Then, for ever p - (2
∏n
i=1 ai), F has a non-trivial

zero in Qp.

Proof.
By Proposition 2.2.2, F ≡ 0 mod p has a non-trivial solution (since none of the ai’s are divisi-
ble by p, and Z/pZ is a finite group). Let this solution be (x1, . . . , xn). At least one of the xi is
non-zero mod p, so wlog, let x1 6≡ 0 mod p. Then, consider G(X) = F (X,x2, . . . , xn). Then
G(x1) ≡ 0 mod p and G′(x1) = 2x1 6≡ 0 mod p. By Hensel’s Lemma, x lifts to x′ ∈ Qp so that
(x′, x2, . . . , xn) is a non-zero root of F .
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And now, we look at the case where F has 3 variables.

Proposition 2.6.5
Let a1, a2, a3 ∈ Z∗ be pairwise relatively prime and square-free. Then,

F (X,Y, Z) = a1X
2 + a2Y

2 + a3Z
2 = 0

has non-trivial solutions in Q if the following are all satisfied.

1. The ai do not all have the same sign.

2. For each odd prime p | a1,
(−a2a−1

3
a1

)
= 1, and similarly for every prime dividing a2 and a3.

3. If a1 is even, then either a2 + a3 or a1 + a2 + a3 is divisible by 8, and similarly for a2 and a3.

4. If the ai are all odd, then there is a j 6= i such that ai + aj ≡ 0 mod 4.

Proof.
Condition 1 obviously implies that F has a non-trivial solution in R (wlog, a1 and a2 have different
signs, then (

√
a1a2, a1, 0) is a solution). By Proposition 2.6.4, F has a non-trivial solution in Qp for

p - 2a1a2a3. It remains to show that F has a non-trivial solution in the remaining Qp, using the other
three conditions.

Now, consider p | a1, where p is an odd prime. Then, condition 2 says that there is a r ∈ Z such that

a2 + r2a3 ≡ 0 mod p.

Then, (1, 1, r) is a solution of F mod p. Let G(Y ) = F (1, Y, r) = a1 + a2Y
2 + a3r

2. Then,
G(1) ≡ 0 mod p and G′(1) = 2a2 6≡ 0 mod p (since a1 and a2 are relatively prime). Thus, by
Hensel’s Lemma, G and thus F has a non-zero solution in Qp. Exchanging the roles of a1 with a2
then a3 yields a solution for every p | ai.
Finally, we consider Q2. If the ai are all odd, then condition 4 holds. Wlog, let

a1 + a2 ≡ 0 mod 4.

Let G(X) = a1X
2 + a2. Then, G(1) ≡ 0 mod 4 and G′(1) = 2a1 6≡ 0 mod 4. Then by

Corollary 1.4.4, there is a non-zero root of F in Q2.

If a1 is even, then condition 3 says that either a2 + a3 or a1 + a2 + a3 is divisible by 8. One of a2 or
a3 must not be even, wlog say 2 - a2. Then, if

a2 + a3 ≡ 0 mod 8,

let G(Y ) = a2Y
2 + a3. It follows, G(1) ≡ 0 mod 4 and G′(1) = 2a2 6≡ 0 mod 4. Then by the

same reasoning as in the previous paragraph, it follows that there must be a non-zero root of F in Q2.
On the other hand, if

a1 + a2 + a3 ≡ 0 mod 8,

let G(Y ) = F (1, Y, 1) = a1 + a2Y
2 + a3. Then, G(1) ≡ 0 mod 8 and G′(1) = 2a2 6≡ 0 mod 8

(since a2 is not even). By Corollary 1.4.4, G and F have non-zero roots in Q2.

Thus, given the conditions, F has solutions in Qp and R. Hence by Hasse-Minkowski, F has a
solution in Q.
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Remark 2.6.6
In fact, the conditions in Proposition 2.6.5 are also necessary. See [2] (page 83) for details. Hence for
any quadratic form in three variables, the above conditions determine whether the form as a non-trivial
solution in Q.

Example 2.6.7
Revisiting F (X,Y, Z) = X2+3Y 2−7Z2, it is clear that all conditions of the previous proposition are
satisfied, and thus F has a non-trivial solution in Q. In fact, in the calculations done in Example 2.6.3
were all specific cases of the proof of Proposition 2.6.5.

Remark 2.6.8
The Hasse-Minkowski Theorem cannot be extended to polynomials of higher degrees. For example,
the cubic form,

3X3 + 4Y 3 + 5Z3 = 0

has non-trivial solutions in each Qp and R, but none in Q. Hensel’s Lemma can be used to show that
F has non-trivial roots locally. For a detailed discussion by Selmer on the lack of roots on Q, see [6]
page 205.

Remark 2.6.9
We have seen how useful the Hasse-Minkowski theorem is. This is a special case of the Hasse prin-
ciple, which is basically the principle of being able to move between local and global solutions. We
proved the case of quadratic forms between Q and Qp, R. Following a similar proof, and discussion
on number fields, one can reach Hasse’s conclusion that quadratic forms have a solution in a number
field (finite field extension) if and only if it has a solution locally at all places. Note that the places of
Q are Qp and R. Further study can take place by investigating the Brauer group. The Brauer-Manin
obstruction can sometimes explain why the Hasse principle does not hold. See [11].

2.7 An Application

Here is an example of where the p-adic numbers are useful outside of number theory.

Theorem 2.7.1 (Monsky’s Theorem)
A square cannot be dissected into an odd number of triangles of equal area.

(See [4] for a detailed explanation. We sketch a proof here.)

Sketch proof .
Wlog, suppose it is the unit square of area 1. Label the vertices this square as (0, 0), (1, 0), (0, 1),
(1, 1). Dissect the square into triangles. Call a vertex the corners of each triangle (which includes the
corners of the square).

1. A Sperner colouring is where we label each vertex with one of three colours, a, b, and c, in
such a way:

(a) No edge of any triangle or the square contain vertices of all 3 colours.
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(b) Only one edge of the square contains both colour a and c.

Then, Sperner’s Lemma ([4], Lemma 2) states that given a Sperner colouring, there is at least
one triangle that has vertices of the 3 different colours.

2. Given a point in the square, say (x, y), we give it a colour (either a,b,c) based on the following.

a if v2(x) > 0 and v2(y) > 0,
b if v2(x) ≤ 0 and v2(x) ≤ v2(y),
c if v2(y) ≤ 0 and v2(y) < v2(x).

By Chevalley ([4], Page 136), we extend this valuation on Q to R.

We claim that if (x0, y0) has colour a, then (x1, y1) and (x1, y1)−(x0, y0) have the same colour.
To show this, first note that v2(x0) > 0. We use Proposition 1.2.4. If v2(x1) > 0, then

v2(x1 − x0) ≥ min{v2(x1), v2} > 0.

If v2(x1) ≤ 0, then
v2(x1 − x0) ≥ min{v2(x1), v2} = v2(x1).

A similar argument works for the second coordinate. Hence, in both cases, (x1, y1) and
(x1, y1)− (x0, y0) have the same colour.

We also claim that any three collinear points on R2 (regardless of the dissection) does not use
all three colours. To prove this, consider three points, A, B, and C with corresponding colours
a, b, c respectively. We wish to show these aren’t collinear, that is, B − A = (x1, y1) and
C −A = (x2, y2) are not parallel. Consider the matrix,

M =

(
x1 x2
y1 y2

)
.

Then, detM = x1y2 − x2y1. By the previous claim, B −A has colour b, and C −A is c. So,
v2(y2) < v2(x2) and V2(x1) ≤ v2(y2). Hence, v2(x1y2) < v2(x2y1) and by Proposition 1.2.4,

v2(detM) = min{v2(x1y2), v2(x2y1)} ≤ 0 <∞.

It follows detM 6= 0, and thus the three points are not collinear.

3. Let n be odd and consider a dissection with n triangles of equal area. Note by the first claim
that no side of the square or triangles have all three colours. Then, (0, 0) has colour a, (0, 1) is
c, and both (1, 0) and (0, 1) are b. It can be shown that there are an odd number of edges with
endpoints of colour a and c.

By Sperner’s lemma, there is a triangle with vertices of the three different colours, call these
A, B and C. Now, modifying the proof of the second claim, it can be shown using Cartesian
geometry, the area of the triangle with vertices A, B, and C, has area

V =
x1y2 − x2y1

2
=

detM

2
.
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Thus,

v2(V ) = v2

(
detM

2

)
≤ −1

Since the area of the square is 1, each triangle has area 1
n , but as n is odd,

v2(V ) = v2

(
1

n

)
= 0

A contradiction. Hence n must be even.



Chapter 3

Dirichlet’s Theorem

3.1 Motivation

We start by presenting this famous theorem and proof by Euclid.

Theorem 3.1.1
There are infinitely many primes.

Proof.
Suppose for a contradiction that there are finitely many primes. Let these be p1, p2, . . . , pn. Let
N = p1p2 · · · pn+1 ≥ 2. Then, there exists a prime q | N . Since we assumed there are finitely many
primes, q = pi for some i. Then, we have

q | N and q | p1 · · · pn.

It follows that q | (N − p1 · · · pn) = 1. But there are no primes dividing 1, a contradiction. Thus
there must by infinitely many primes.

Lemma 3.1.2
If N ≡ 3 mod 4, then there is a prime q | N such that q ≡ 3 mod 4.

Proof.
Suppose not. Then, for every prime q | N , q ≡ 1 mod 4. Then, N ≡ 1 mod 4.

We modify Euclid’s proof.

Theorem 3.1.3
There are infinitely many primes of the form p ≡ 3 mod 4.

Proof.
Suppose for a contradiction that there are finitely many primes of the form p ≡ 3 mod 4. Let these
be p1, p2, . . . , pn. Let N = 4p1p2 · · · pn − 1 ≥ 2 with N ≡ 3 mod 4. Then, there exists a prime
q | N such that q ≡ 3 mod 4 by the lemma. Since we assumed there are finitely many primes p ≡ 3
mod 4, q = pi for some i. Then, we have

q | N and q | 4p1 · · · pn.

It follows that q | (N −4p1 · · · pn) = −1. But there are no primes dividing−1, a contradiction. Thus
there must by infinitely many primes.

39
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The logical next step is to ask the question: for every a, d ∈ N coprime, are there infinitely many
primes in the set {a + nd : n ∈ N}? This is Dirichlet’s Theorem. As in [7] (Theorem 7), we cannot
create a “Euclid type proof” for every a, d (the condition given in [7] is that a2 6≡ 1 mod d). Thus,
we need to prove Dirichlet’s Theorem using other means. To do this, we need to first take a look at
L-functions.

3.2 Dirichlet L-Functions

3.2.1 Dirichlet Characters

Definition 3.2.1
A Dirichlet character mod n is a function χ : Z→ C such that χ|(Z/nZ)∗ → C∗ is a homomorphism
and χ(m) = 0 if gcd(m,n) > 1. These characters form a cyclic group with ϕ(n) elements (see the
remark).

If the homomorphism is the identity, we define the character χ1, the principal character mod n, as

χ1(a) =

{
0 if a ≡ 0 mod n,
1 otherwise.

Remark 3.2.2
In fact, the group of characters is dual to (Z/nZ)∗. See [3] pages 214-216.

Proposition 3.2.3
A Dirichlet character maps (Z/nZ)∗ to the ϕ(n)-th roots of unity in C∗.

Proof.
Let g be a generator of (Z/nZ)∗. Since χ is a homomorphism,

χ(1) = χ(gϕ(n)) = χ(g)ϕ(n) = 1.

Proposition 3.2.4 (Orthogonality relations)
Let χ be a character mod n. Then,

n∑
i=1

χ(i) =

{
ϕ(n) if χ = χ1,
0 otherwise,

and
ϕ(n)∑
χ

χ(i) =

{
ϕ(n) if i ≡ 1 mod m,
0 otherwise.

Proof.
If χ = χ1, then the sum is counting the elements in the group (Z/nZ)∗, which has ϕ(n) elements. If
χ 6= χ1, choose a ∈ (Z/nZ)∗ such that χ(a) 6= 1. Then,

χ(a)

n∑
i=1

χ(i) =

n∑
i=1

χ(a)χ(i) =

n∑
i=1

χ(ai) =

n∑
i=1

χ(i),
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since group multiplication is a bijection. So, (χ(a)− 1)
∑n

i=1 χ(i) = 0, and since χ 6= χ1,

n∑
i=1

χ(i) = 0.

The second relationship follows in a similar fashion. If i ≡ 1 mod n, the sum counts the number of
characters, ϕ(n). If i 6≡ 1 mod n, choose χ′ such that χ′(n) 6= 1. Then,

χ′(i)

ϕ(n)∑
χ

χ(i) =

ϕ(n)∑
χ

χ′(i)χ(i) =

ϕ(n)∑
χ

χ′χ(i) =

ϕ(n)∑
χ

χ(i),

since the χ’s form a cyclic group. The result follows.

3.2.2 Dirichlet Series

Definition 3.2.5
From now on, let a, d ∈ N coprime and write

Pa,d = {a+ nd : n ∈ N}.

We will also consider characters, χmod d.

Definition 3.2.6
Let s ∈ C. Then

∞∑
n=1

χ(n)

ns

is a Dirichlet Series. Define a Dirichlet L-function as

L(s, χ) =
∞∑
n=1

χ(n)

ns

on its domain of convergence.

Proposition 3.2.7
L(s, χ) converges absolutely for <(s) > 1 and

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1
.

Proof.
L(s, χ) converges absolutely since χ is bounded, and

∑∞
n=1

1
nt converges for t > 1. To prove the

other claim, first note that if S is a finite set of prime numbers, and N(S) the set of natural numbers
whose prime factors belong to S. Then, since χ(nm) = χ(n)χ(m),

∑
n∈N(S)

χ(n)

ns
=
∏
p∈S

( ∞∑
m=0

χ(pm)p−ms

)
.
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Letting S increase to the set of all primes, and rearranging the sum (which is possible because of
absolute convergence), N(S)→ N, and we get,

L(s, χ) =
∞∑
n=1

χ(n)

ns

=
∏
p

( ∞∑
m=0

χ(pm)p−ms

)

=
∏
p

(
1− χ(p)

ps

)−1
Where the last equality is possible since for <(s) > 1, |χ(p)p−s| = |p−s| ≤ |2−s| < 1.

Corollary 3.2.8

L(s, χ) =
∏
p-d

(
1− χ(p)

ps

)−1
.

Proof.
Since χ(p) = 0 for all p | d, the result follows.

Lemma 3.2.9

lim
s→1

∑
p

p−s = − lim
s→1

log(s− 1)

Proof.
This is proved by looking at the Riemann Zeta function. See [1] page 70.

Lemma 3.2.10∑
p

∑
n≥2

χ(p)n

npns is bounded.

Proof.
This is also proved by looking at the Riemann Zeta function. See [1] page 70.

Theorem 3.2.11
If χ 6= χ1, then L(1, χ) 6= 0.

Proof.
To prove this requires a lot of background (such as Abel summations) which i out of the scope of this
paper. Refer to [1] pages 64-73 for details.

Lemma 3.2.12

− lim
s→1

log(s− 1) =
∑
p-d

χ1(p)

ps
.
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Proof.
Since ∑

p-d

χ1(p)

ps
=
∑
p-d

p−s

differs from
∑

p p
−s by a finite number of terms, taking the limit s→ 1 and using 3.2.9,

lim
s→1

∑
p-d

χ1(p)

ps
= lim

s→1

∑
p

p−s = − lim
s→1

log(s− 1).

Lemma 3.2.13
lims→1

∑
p-d

χ(p)
ps is bounded for χ 6= χ1.

Proof.
Let χ 6= χ1. Define the logarithm for x such that |x| < 1 in the usual way:

log
1

1− x
=
∞∑
n=1

xn

n
.

Then, for <(s) > 1, |χ(p)p−s| = |p−s| ≤ |2−s| < 1, so

logL(s, χ) = log
∏
p-d

(
1− χ(p)

ps

)−1
(Proposition 3.2.7)

=
∑
p-d

log

(
1− χ(p)

ps

)−1
=
∑
p-d

∑
n

χ(p)n

npns

=
∑
p-d

χ(p)

ps
+
∑
p

∑
n≥2

χ(p)n

npns
.

Now, logL(s, χ) is bounded by Theorem 3.2.11. Also the boundedness of
∑

p

∑
n≥2

χ(p)n

npns follows

from Lemma 3.2.10. Hence
∑

p-d
χ(p)
ps is bounded.

Lemma 3.2.14

∑
p∈Pa,d

p−s = ϕ(d)−1
∑
χ

χ(a)−1∑
p-d

χ(p)

ps

 .
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Proof.

ϕ(d)−1
∑
χ

χ(a)−1∑
p-d

χ(p)

ps

 = ϕ(d)−1
∑
p-d

p−s
∑
χ

(
χ(a)−1χ(p)

)
= ϕ(d)−1

∑
p-d

p−s
∑
χ

(
χ(a−1p)

)
=

{∑
p-d p

−s if a−1p ≡ 1 mod d

0 otherwise

=
∑
p∈Pa,d

p−s,

where the second to last equality follows from Proposition 3.2.4, and swapping sums is possible
because of absolute convergence.

3.3 Dirichlet’s Theorem

We now have the tools to prove Dirichlet’s Theorem. Let P be the set of prime numbers.

Definition 3.3.1
Let A ⊂ P . Then, the density (call this k) of A is

k = lim
s→1

∑
p∈A

1
ps∑

p∈P
1
ps

= lim
s→1

−1
log(s− 1)

∑
p∈A

1

ps
,

so that 0 ≤ k ≤ 1. Roughly speaking, this is to say that the density of A is the size of A by the size
of P .

Theorem 3.3.2 (Dirichlet’s Theorem)
Pa,d has density 1

ϕ(d) .

Proof.
Let χ be a character mod d. Then, we have

lim
s→1

∑
χ

χ(a)−1∑
p-d

χ(p)

ps

 = lim
s→1

χ1(a)
−1
∑
p-d

χ1(p)

ps
= − lim

s→1
log(s− 1),

since the limit of the sum over p - d is bounded if χ 6= χ1 (Lemma 3.2.13), and goes to − log(s− 1)
if χ = χ1 (Lemma 3.2.12). We also used the fact χ1(a) = 1 (since a and d are coprime). Hence, we
have that by Lemma 3.2.14,

lim
s→1

∑
p∈Pa,d

p−s = lim
s→1

ϕ(d)−1
∑
χ

χ(a)−1∑
p-d

χ(p)

ps

 = − lim
s→1

log(s− 1)ϕ(d)−1.
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It follows that
k = lim

s→1

−1
log(s− 1)

∑
p∈Pa,d

p−s = ϕ(d)−1.

Corollary 3.3.3
For every a, d ∈ N coprime, the set Pa,d is infinite, that is, there are infinitely many primes of the
form a+ nd, where n ∈ N.

Proof.
Since a finite set has density 0, the result follows.

Remark 3.3.4
Many beautiful theorems can come out of Dirichlet’s Theorem, such as for a ∈ Z (non-square), the
set {p prime :

(
a
p

)
= 1} has density 1

2 (see [1] page 75). It is of course also used in the proof of
2.6.1. Another extension of Dirichlet’s is the Green-Tao theorem (see [10]), which states that any
Pa,d, when ordered, contains arbitrarily long sequences of primes. Future research will be to digest
this proofs, and also to investigate further applications of Dirichlet’s Theorem.
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