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Abstract

The Mordell-Weil theorem on elliptic curves states that the group structure on the
rational points of an elliptic curve is finitely generated. This gives rise to descent
techniques to find the rank of the elliptic curve. These results can be extended to
Jacobians of higher genera curves, in particular genus 2 curves. In this dissertation,
we will compare and summarise the fundamentals of genus 2 curves to elliptic curves,
and investigate complete 2-descent and descent by Richelot isogeny with reference to
examples. We shall also touch on using complete 2-descent on the Jacobian of genus 3
curves.
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Chapter 1

Introduction

Elliptic curves (non-singular projective curves of the form Y 2 = cubic in X) is a topic of
core study in arithmetic geometry. Given an elliptic curve E with at least one rational
point, we can define a group law on the rational points E(Q). The identity is the point
at infinity and negation of a point is given by mirroring the point along the x axis.
Addition of two points is defined to be the negation of the third point of intersection
of the line between the two points and E.

When there is a group law, the structure will always be a point of investigation. Firstly,
it is clear that the group is abelian. A theorem by Mordell and Weil states that E(Q)
is finitely generated, thus E(Q) is a product of a finite abelian group called the torsion
of E and a free part which is a power of Z. This power of Z is called the rank of the
curve, so a rank 0 curve has a finite number of points in E(Q).

For any elliptic curve, there exists a method using the Nagell-Lutz theorem to find
all torsion points. We can also bound the torsion by considering reductions modulo a
prime. In fact, a theorem by Mazur limits the structure of E(Q) to one of 15 finite
abelian groups which all have order less than or equal to 12.

While the torsion seems to be easy to study, investigating the rank of the free compo-
nent is usually harder. To date, there is no known algorithm that can find the rank for
every elliptic curve, but there are a few methods that might work. The first method
that one might come across is a descent by 2-isogeny. This method comes from a con-
structive proof of the Mordell-Weil theorem through a weaker theorem that states that
E(Q)/2E(Q) is finite. This requires investigating maps between two isogenous curves,
say φ : E 7→ E ′ and φ : E ′ 7→ E, and finding E(Q)/φ′(E ′(Q)) and E ′(Q)/φ(E(Q)) by
mapping these to Q2/(Q∗)2, the rational modulo squares.

Finding the image of this map (which happens to be a homomorphism and so the image
is related to it’s pre-image E(Q)/φ′(E ′(Q)) and its dual) requires either working with
homogeneous spaces (sets of equations in Z) or a commutative diagram (a method by
Cassels and Flynn which we shall describe later). The first method generally requires
more computational power, so will become unreasonable to do by hand as E becomes
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2 CHAPTER 1. INTRODUCTION

more complicated, but gives us more information about generators of E(Q)/2E(Q)
(and thus more information about E(Q)). The latter method is easier to do by hand.

If we have found the groups E(Q)/φ′(E ′(Q)) and its dual, we can put these together
to form E(Q)/2E(Q) which is related to E(Q) as follows. Since E(Q) is finite, write
E(Q) ≃ Etors(Q)×Z×r (where the first component is the torsion and the second is the
free part of rank r). We can then quotient out by the double of all points, 2E(Q) to
get

E(Q)/2E(Q) ≃ E(Q)[2]× (Z/2Z)×r,

where the first component is the 2-torsion subgroup and the second component is
r copies of the group of order 2. The rank is easily solvable if we already know
E(Q)/2E(Q) since finding E(Q)[2] is an easy task of finding points of order 2.

A more effective method of finding the rank is called complete 2-descent. Again, we
investigate a map to Q2/(Q∗)2, but this time, we take this map directly from E/2E(Q).
This reduces two separate calculations into one big calculation. It is also a method that
scales well with higher genera of curves.

If descent by 2-isogeny yields a rank bound, then complete 2-descent always at least
gives a better bound. Sometimes the bounds might be the same, but if complete 2-
descent on a curve works, and descent by 2-isogeny doesn’t, we have a member of
the Tate-Shafarevich group, where the homogeneous spaces violate the Hasse principle
(local solutions in Qp and R implies a global solution in Q).

A hyperelliptic curve is a non-singular curve C : Y 2 = F (X) where F (X) ∈ k[X] is a
non-singular polynomial in X. A curve of genus g can be thought of as a hyperelliptic
curve where F is of degree 2g + 1 or 2g + 2. Hence a curve Y 2 = cubic (i.e. an elliptic
curve when there is a k root) is of genus 1 and Y 2 = quintic is of genus 2. Later, we
shall show that this definition is more-or-less the same as the standard way of defining
genus.

As with elliptic curves, it is possible to have a group structure. In this dissertation,
we shall look at the Jacobian G of genus 2 curves after describing arithmetic on genus
1 curves. The group structure on the Jacobian of a genus 2 curve C involves pairs of
points (instead of single points on an elliptic curve), and these points can be rational
or in a quadratic extension of Q. Addition is given by the 5th and 6th intersection of
C and the unique cubic that goes through the four points of two elements. We wish to
show analogues of the elliptic curves results on Jacobians of genus 2 curves.

As with elliptic curves, we can consider a reduction of C modulo p to show that the
torsion of G is finite. Mordell-Weil also holds for genus 2 curves - that G/2G is finite
and G is finitely generated.

Complete 2-descent works onG with minor modifications. One line homogeneous spaces
become several lines, so it is best to use the alternative method involving a commutative
diagram. The analogue to descent by 2-isogeny is a descent by Richelot isogeny, which
gives is used in the constructive proof of the Mordell-Weil theorem. As with the genus 1
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case, complete 2-descent is always at least better than a descent by Richelot isogeny,
and when it is strictly better, we have a member of the Tate-Shafarevich group.

These descent methods serve as a method to confirm the rank, provided we already
know all generators of the group, though as with elliptic curves, is still an open question
whether there exists a method that always works to find the rank and all generators of
a group.

The rank gives us an idea of the structure of G, but what does C(Q) look like? If
C is an elliptic curve, then C(Q) = G. But in genus 2, it is more complicated. If
the rank of C is 0, then G is all torsion, and C(Q) can be found by looking at the
pairs of points of elements of the torsion. If the rank is 1, we can apply Chabauty’s
Theorem which says that C(Q) is finite. The proof is constructive and we shall explain
how we can determine C(Q) entirely given the rank and a free generator. In fact, a
theorem by Falting says that C(Q) is always finite for any rank, though the proof is
not constructive.

Most results mentioned, especially the Mordell-Weil Theorem and Falting’s Theorem
hold for curves of higher genus. We shall see a genus 3 example of complete 2 descent
at the end of this dissertation. Chabauty also holds with the condition that the genus
g ≥ 1 and the rank r is less than g. These results can also extend to arbitrary fields,
especially number fields (finite field extensions of Q).

On the other hand, there is no known general form of Mazur’s theorem (which gives a
complete list of torsion structures of the Jacobian of a genus 1 curve) that holds in any
genera. At the end of this dissertation, we will give an example of how to construct a
curve whose Jacobian has large torsion.

The arithmetic of curves of any genus is interesting on itself, but it is also used in
other fields of study. Notable applications are the uses of elliptic curves and isogenies
in cryptography. The latter of these is quantum resistant and so arithmetic on the
Jacobian of curves has had increasing engagement in the wider community.

In this dissertation, we start with the aforementioned methods of descent to find the
rank of an elliptic curve then move on to investigating genus 2 curves. The dissertation
will mostly be based off [1] with points from other sources and a few examples. At the
end, there is an appendix with code snippets that assist with the computational aspects
of this dissertation.
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1.1 Notation

Here are explanations of some notation that may cause confusion.

Let G be a group and n ∈ N then write G×n for the n-fold direct product
∏n

i=1G =
G× · · · ×G. Write Gn to denote the subgroup {gn : g ∈ G} (where G is written with
multiplicative notation).

If R is a ring then let R∗ be the group of units (i.e. the group of multiplicatively
invertible elements).

For any prime p, we use Qp to denote the p-adic numbers and Zp the ring of integers
of Qp. Write p = ∞ for R. Thus we write Fp ≃ Z/pZ for the abelian group of order p.

Let for a ∈ Zp, the p-adic integers, write vp(a) as usual the p-adic valuation, that is
the largest p power of a (and vp(0) = ∞). Furthermore, if a/b ∈ Qp, write vp(a/b) =
vp(a)− vp(b). Let the p-adic absolute value be given by | · |p = p−vp .

In the context of curves, let ∞ denote the point at infinity (eg. on P1, the projective
line).



Chapter 2

Elliptic Curves

We first give, without detailed proofs, a brief review on the basics of elliptic curves.
Most proofs can be found in [3] and [5].

2.1 Definitions

Recall that an elliptic curve over a field is a non-singular projective cubic curve with
at least one rational point. In a field of characteristic not 2 nor 3 (eg Q), every elliptic
curve can be birationally transformed into a curve Y 2 = X3+AX+B. Throughout this
chapter, we shall assume that an elliptic curve has this form, unless otherwise stated.
Let ∆ denote the discriminant, so here ∆ = 4A3 + 27B2 ̸= 0.

Let E : Y 2 = X3 + AX + B be an elliptic curve over k (char ̸= 2, 3) with Jacobian J .
The identity of J is the point at infinity, O = ∞ (i.e. (0, 1, 0) on the projective form
Y 2Z = X3+AXZ2+BZ3). The points in the Jacobian are exactly the points on E(k).
These points form a group G = J(k) with the following operations.

� O is the identity.

� If P = (x, y) ∈ G, then −P = (x,−y).

� If P,Q,R ∈ G such that R is the third point of intersection of the line through P
and Q with E, then P + Q = −R. We take multiplicities into account, so if for
example, P = Q, then we use the line tangent to E at P .

This addition law is illustrated below.

5



6 CHAPTER 2. ELLIPTIC CURVES

P

Q

P +Q = R

-R

R

There are, of course, equations that define addition (eg. [5] 1.4) which are derived from
substituting the equation of the line into the cubic, but in practice, it is easier to not
remember/use these formulae and to either use the definition of the group law, or just
use computational software.

Let n ∈ Z. Let G[n] be the usual notation denoting the n-torsion subgroup. That is,
P ∈ G[n] if and only if nP = O. Additionally, write Gtors as the group of all torsion
points, Gtors = ∪nG[n].

Proposition 2.1.1
The 2-torsion are all points (x, y) ∈ G such that y = 0 together with the identity. Thus
G[2] ≃ (Z/2Z)×i where i ∈ {0, 1, 2}.

Proof.
If P ∈ G[2], then 2P = O and so P = −P . So either P = O or P = (x, 0). There are
at most three such x ∈ Q.

2.2 Torsion

We now give a few standard results to aid in the classification of torsion points. Here,
we consider elliptic curves over Q. These can be found in various textbooks such as [3]
and [5]. Many of these results also have higher genera analogues.

This theorem due to Hasse gives an estimate of the number of points on an elliptic curve
C reduced modulo a prime. In fact, this also holds for higher genus as in Theorem 4.1
of [5].

Theorem 2.2.1 (Hasse)
Let E be an elliptic curve over Fp with p a prime. Then ||E(Fp)| − (p+ 1)| ≤ 2

√
p.

Hasse’s theorem can be combined with the following proposition to find the structure
of the torsion as in Section 4.3 of [5].

Proposition 2.2.2 (Reductions)
Let E ne an elliptic curve over Q. If for a prime p, E mod p is non-singular, then
E(Q)tors is isomorphic to a subgroup of E ′(Fp) where E ′ is the reduced E mod p.
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The reduced curve is an elliptic curve when p ̸= 2 and p ∤ ∆. We call these p primes of
good reduction. Note that furthermore, |E(Q)tors| | |E ′(Fp)| and the torsion is finite.

We then have a theorem that gives a necessary condition on the finite order points
(Chapter 12 of [3]).

Theorem 2.2.3 (Nagell-Lutz)
Let E be an elliptic curve over Q and (x, y) ∈ E(Q)tors \{O}. Then x, y ∈ Z and either
y = 0 or y2 | ∆.

In fact, there are only a limited number of types of torsion of elliptic curves.

Theorem 2.2.4 (Mazur)
The torsion of an elliptic curve over Q must be isomorphic to one of these 15 groups

� Z/nZ with 1 ≤ N ≤ 10 ,

� Z/12Z,
� Z/2Z× Z/2nZ with 1 ≤ n ≤ 4.

Example 2.2.5
Let E : Y 2 = X(X − 5)(X − 7). Clearly E has three points of order 2 (namely,
(0, 0), (5, 0), (7, 0)). Thus |Etors(Q)| ≥ 4. Conversely, reducing E modulo 3,

Ẽ : Y 2 ≡ X3 + 2X ≡ X(X + 1)(X − 1).

Thus, Ẽ(F3) = {O, (0, 0), (0,±1)} and so |Ẽ(F3)| = 4. Since Etors(Q) injects into
Ẽ(F3), this means |Etors(Q)| ≤ |Ẽ(F3)| and so Etors(Q) has exactly four points, namely
the points of order 2 and the identity.

Example 2.2.6
When the lower bound for the torsion is not clear, we can find extra torsion points
using Nagell-Lutz, then use reductions to prove that there are no other torsion points.

For example, consider E : Y 2 = X3 − X2 − 4X + 4 = (X − 1)(X − 2)(X + 2) with
∆ = 28 · 32. Clearly, E[2] = {O, (1, 0), (2, 0), (−2, 0)}.
Considering the reduction modulo 5, E ′ : Y 2 = X3 − X2 + X − 1 has the following
possible right sides: {4, 0, 0, 0, 1} which are all squares. Thus

E ′(F5) = {O, (0,±2), (1, 0), (2, 0), (3, 0), (4,±1)}.

It follows that |Etors(Q)| ≤ 8. Since (0, 2) + (4, 1) = (0,−2) + (4,−1) = (3, 0), (0, 2)
and (3, 1) must be points of order 4, and so Etors(Q) is isomorphic to a subgroup of
Z/2Z× Z/4Z.
By Nagell-Lutz, (x, y) /∈ E[2] is torsion only if y2 | ∆ = 28 · 32. So possible y values
are {±1,±2 ± 3,±4,±6,±8,±12,±16,±24,±48}. Of these, only (0,±2) and (4,±6)
have integer coordinates. It is an easy computation using the group law to show that
these are points of order 4. Since these give a total of 4 integer points giving a total of
8 known points, these must coincide with all 8 possible torsion points.
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2.3 2-Isogeny Descent

Descent procedures give us a way to find the structure of G. Since the group is abelian
and finitely generated (as we shall see from the Mordell-Weil Theorem), G ≃ Gtors×Zr

where r ≥ 0, r ∈ Z. This r is called the rank of G. The standard way to find the
rank (which is taught in courses) is to do a descent by 2-isogeny. A brief outline of this
procedure is as follows.

For this section, suppose that the elliptic curve has at least one point of order 2 in Q.
Then we can birationally move this point to the origin. Thus consider elliptic curves
of the form E : Y 2 = X(X2 +AX +B) with ∆ = B(A2 − 4B) ̸= 0 with corresponding
group G.

Definition 2.3.1
An isogeny between two curves, is a morphism between them that preserves the identity.

Define another elliptic curve E ′ : Y 2 = X(X2+A′X +B′) where A′ = −2A, B′ = A2−
4B with corresponding group G′. Then these cures are isogenous with corresponding
isogeny

φ : E → E ′ : (x, y) 7→
(
y2

x2
,
y(x2 −B)

x2

)
and φ(O) = O. An inverse isogeny is given by

φ′ : E ′ → E : (x, y) 7→
(

y2

4x2
,
y(x2 −B′)

8x2

)
.

These maps are surjective homomorphisms with kernels {O, (0, 0)}. For any P ∈ G,
φ′ ◦ φ(P ) = 2P .

The following theorem tells us that the rank must indeed be finite, and the proof can
give us an algorithm to find the rank using the isogenies.

Theorem 2.3.2 (Mordell-Weil)
G/2G is finite. G is finitely generated.

Since G is finitely generated, the rank is an integer and so we can mod out by 2G to
get that

G/2G ≃ G[2]× (Z/2Z)×r.

Thus, the problem reduces to finding out G/2G. But since φ′ ◦φ is the point doubling
map, G/2G is generated by G/φ′(G′) and φ′(G′/φ(G)).

Lemma 2.3.3
(x, y) ∈ φ(G) ⊆ G′ if and only if x ∈ (Q∗)2.
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Define a map q : G′ → Q∗/(Q∗)2 given by

q(P ) =


B′, P = (0, 0);

x, P = (x, y), x ̸= 0;

1, P = O.

This map is a homomorphism with kernel φ(G). We can similarly define q′ : G →
Q∗/(Q∗)2. By the first isomorphism theorem, G/φ′(G′) ≃ im(q′) and G′/φ(G) ≃ im(q).
Thus, we need to find the image of q and q′.

To find these images, we can use homogeneous spaces. Let r ∈ (Z∗)/(Z∗)2 (a square
free integer). If r ∈ im(q) (respectively q′) then r | B′ (resp. B).

Lemma 2.3.4
Define spaces

Wr : rl
4 + A′l2m2 +

B′

r
m4 = n2

W ′
r : rl

4 + Al2m2 +
B

r
m4 = n2.

Then r ∈ im(q) (resp. q′) if and only if Wr (resp. W ′
r) has a solution with l,m, n ∈ Z,

(l,m, n) ̸= (0, 0, 0) and gcd(l,m) = 1.

Here is a summary of the whole descent process.

Proposition 2.3.5 (Descent by 2-isogeny)

� Let E : Y 2 = X(X2 + AX +B), A,B ∈ Z, B(A2 − 4B) ̸= 0.

� D : Y 2 = X(X2 − 2AX + A2 − 4B).

� Let q : D(Q) → Q/(Q∗)2 given by q(0, 0) = A2 − 4B, q(O) = 1 and q(x, y) = x
(modulo squares). Similarly, q′ : E(Q) → Q/(Q∗)2 by q̂(0, 0) = B, q̂(O) = 1 and
q(x, y) = x.

� Find the image of q and q′ using homogeneous spaces. That is, find the set of
r ∈ (Z∗)/(Z∗)2 such that r | A2 − 4B (resp. B) such that Wr (resp W ′

r) has a
relevant solution.

� Combine the results to find the structure of E(Q)/2E(Q).

� Find the 2-torsion E(Q)[2].

� Use the fact that E(Q) ≃ Etors(Q)×Z×r iff E(Q)/2E(Q) ≃ E(Q)[2]× (Z/2Z)×r,
to solve for rank r.
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2.3.1 An Example

Let E : Y 2 = X(X−5)(X−7). Equivalently, Y 2 = X3−12X2+35X = X(X2−12X+
35).

We previously computed that this curve has four torsion points. We perform a descent
by 2-isogeny to find the rank.

Let D : Y 2 = X(X2 + 24X + 4) be the curve isogenous to E. With the usual notation,
let φ (respectively φ̂) be the isogeny from E(Q) to D(Q) (resp. D(Q) → E(Q)) and q
(resp. q̂) be the homomorphism map to the first coordinate of a point on E (resp. D) to
Q/(Q∗)2. Let Wr (resp. Ŵr) be the homogeneous space corresponding to r ∈ q(E(Q))
(resp. r ∈ q̂(D(Q))).

Let us first consider the isogeny from E to D. Then q(O) = 1 and q(0, 0) = 4 ≡ 1.
Thus {1} ⊆ im(q) ⊆ {r ∈ Q/(Q∗)2 : r | 4} = {±1,±2}. We now test for the triviality
of each homogeneous space.

Consider the non-trivial integer solutions ofW−1 : −l4+24l2m2−4m4 = n2, and as usual,
assume l and m are coprime. Completing the square, −(l2 − 12m2)2 + 156m4 = n2.
Taking this modulo 3, −l4 ≡ n2. Since −1 is not a quadratic residue modulo 3,
it must be the case that 3 | n and 3 | l2, which also means 3 | l. But then, 9 |
(−l4−24l2m2−n2) = −12m4 and so 3 | −4m4. It follows that 3 | m and gcd(l,m) ≥ 3.
Thus W−1 cannot have any non-trivial integer solutions and −1 /∈ im(q).

Similarly, consider the solutions of W2 : 2l
4 + 24l2m2 + 2m4 = n2. Then clearly, 2 | n2,

so 2 | n, say 2n′ = n. Then l4 + 12l2m2 + m4 = 2n′2 and completing the square,
(l2 +6m2)2 − 35m4 = 2n′2. Modulo 5, (l2 +6m2)2 ≡ 2n′2, since 2 is not a squre mod 5,
5 | n′ and 5 | (l2 + 6m2). Thus, 25 | 2n′2 − (l2 + 6m2)2 = −35m4, so 5 | m. But, then
5 | l2 = ((l2 + 6m2) − 6m2) and so gcd(l,m) ≥ 5. So W2 has no non-trivial solutions
and 2 /∈ im(q).

Finally, consider W−2 : − 2l4 + 24l2m2 − 2m4 = n2. As before, write n = 2n′. Then
−l4+12l2m2−m4 = n′2 and completing the square, −(l2−6m2)2+35m4 = 2n′2. Since
−2 is not a square modulo 5, 5 | (l2 − 6m2) and 5 | n′. So 25 | 35m4 and 5 | m. Thus
5 | l and there are no non-trivial integer solutions to W−2. Hence 2 /∈ im(q).

Thus im(q) = {1} and E(Q)/φ(D(Q)) ≃ im(q) = 1.

Now let us consider the isogeny from D to E. Then q̂(O) = 1 and q̂(0, 0) = 35 ≡ 35.
Thus {1} ⊆ im(q̂) ⊆ {r ∈ Q/(Q∗)2 : r | 35} = {±1,±5,±7,±35}. As before, we test
for the triviality of each homogeneous space.

First, Ŵ−1 : − l4 − 12l2m2 − 35m4 = n2. This clearly has no non-trivial solutions in Z,
since it has no non-trivial solutions in R (as

√
−1 /∈ R).

Next consider Ŵ3 : 5l
4−12l2m2+7m4 = n2. Then l = m = 1 and n = 0 is a non-trivial

integer solution with gcd(l,m) = 1.
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Since im(q̂) is a group, it follows that 5 · 35 ≡ 7 ∈ im(q̂) and r · −1 /∈ im(q̂) for
all r ∈ {1, 5, 7, 35} (since otherwise, −1 ∈ im(q̂)). Thus im(q̂) = {1, 5, 7, 35} and
D(Q)/φ̂(E(Q)) ≃ im(q̂) ≃ ⟨(0, 0), (5, 0)⟩ ≃ Z/2Z× Z/2Z.

Now, φ̂(E(Q)/D(Q)) is trivial (since E(Q)/D(Q) is trivial). So E(Q)/2E(Q) ≃ Z/2Z×
Z/2Z. Since Etors(Q) is also Z/2Z×Z/2Z, it follows that the rank must be trivial, and
E(Q) = Etors(Q).

2.4 Complete 2-descent

Complete 2-descent another method of finding the rank of an elliptic curve. Although it
is slightly more complex to understand, it is much easier to generalise to higher genera.
In this section, we shall describe complete 2-descent in the specific elliptic curve case,
and later, we will describe complete 2-descent for Jacobians of higher genera.

Let E : Y 2 = (X − A)(X − B)(X − C) where the roots are all in Z and distinct. As
with 2-isogeny, finding G/2G and the 2-torsion is sufficient to deduce the rank.

Instead of two maps to Q modulo squares, define a map µ′ : G/2G → (Q∗/(Q∗)2)×2

given by

µ′(P ) =


[A−C
A−B

, A−B], P = (A, 0);

[B − A, B−C
B−A

], P = (B, 0);

[1, 1], P = O;

[x− A, x−B], P = (x, y), x ̸= A,B.

Then µ′ is an injective homomorphism. Thus G/2G ≃ im(µ′). Thus it is sufficient to
find the image of this map. Note also that

im(µ′) ≤ (⟨−1, 2, p prime : p | (A−B)(B − C)(A− C)⟩)×2.

Thus µ′(A, 0) and µ′(B, 0) generate a lower bound for im(µ′). Any infinite order point
(if one exists) will be independent from the previous subgroup, so can also be added on
to get a bigger lower bound.

On the other hand, there are two ways to find an upper-bound for im(µ′). We can
either use homogeneous spaces, or use a method presented by Cassels and Flynn. The
latter of these methods is more practical for higher genus computations, though the
first is easier to understand.
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2.4.0.1 Using Homogeneous Spaces

From [2] X.1.1-1.4, we have the following result.

Proposition 2.4.1
[r, s] ∈ (Q∗/(Q∗)2)×2 is the image of a point P ∈ G/2G if and only if there is a solution
(l,m, n) ∈ Q×3 with l,m non-zero to the system

rl2 − sm2 = B − A

rl2 − rsn2 = C − A.

Furthermore, if a solution (l,m, n) for [r, s] exists, then P = (rl2+A, rslmn) is a point
of G that maps to [r, s]. Thus, this method is useful for finding generators of G. This
is the biggest advantage of using homogeneous spaces, since the next method requires
the knowledge of all generators to achieve a sharp bound.

2.4.0.2 Without Using Homogeneous Spaces

Let p be a prime. Denote J(Qp) as Gp. Then there are inclusion maps ip and jp that
map from global to local as in the following commutative diagram from [1] 11.2.

G/2G M ≤ (Q∗/(Q∗)2)
×2

Gp/2Gp Mp ≤
(
Q∗

p/(Q∗
p)

2
)×2

µ′

ip jp

µ′
p

Note that µ′
p = jp ◦ µ′ ◦ i−1

p is the map µ′ on the relevant local fields. The general
direction of this method is to choose a few primes p and look at the map µ′

p. Once we
find the image of µ′

p, we can take the preimage of jp to get an upper bound for the
image of µ′ since im(µ′) ≤ ⟨im(µ′

p), ker(jp)⟩. The hope is that taking intersections over
a few p will give us a sharp upper bound and hence deduce the rank.

Since Mp ≤
(
Q∗

p/(Q∗
p)

2
)×2

, we can take a set of representatives for Q∗
p/(Q∗

p)
2 to generate

the right. Thus [4] 3.3 can tell us the set of representatives.

Proposition 2.4.2
Let x = pnu ∈ Q∗

p (written so n ∈ Z and u ∈ Q∗
p). If p is an odd prime, then x is

a square if and only if u mod p is a non-zero square and n is even. If p = 2, then
x = 2nu ∈ Q∗

2 is a square if and only if n is even and u ≡ 1 mod 8.

Proof.
Recall that every x can be written uniquely as pnu where u is a unit. So it’s clear that
n must be even if x was a square, in particular, x is a square if and only if n is even and
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u is a square. If p is an odd prime, u is a square if and only if u mod p is a (non-zero)
square by Hensel’s lemma. If p = 2, then Hensel’s lemma says that u mod 8 is a square
if and only if u is a square.

Corollary 2.4.3
If p ̸= 2, a set of representatives of Q∗

p/(Q∗
p)

2 is {1, p, u, up} where u ∈ Z∗
p is a quadratic

non-residue modulo p. If p = 2, then a set of representatives is {±1,±5,±2,±10}.
Proof.
If p ̸= 2, then clearly a non-square either has an odd power of p or the unit in the
decomposition is a non-square and the set of representatives follows. If p = 2 then the
squares in Z/8Z are {±1,±5}, so the representatives also follow.

These results easily give us the kernel of jp.

Now we can use the fact ([1] 7.6) that

|Gp/2Gp| =


|Gp[2]|/2, p = ∞;

|Gp[2]|, p ̸= 2,∞;

2|Gp[2]|, p = 2.

This tells us how many generators we are looking for in the local field (since each
element has order 2). We can find the lower bound of the image of Mp by taking the
lower bound of M under jp. After removing equivalent generators, we may be short of
the required number.

To find extra generators, search for an x that lies in Gp by using Proposition 2.4.2 and
that under µ′

p maps to something outside the span of the existing generators. To do
this, do trial and error on small x until we get a valid point in Gp by checking that
(x−A)(x−B)(x−C) is indeed a square in Qp. Then apply the map µ′ and check for
independence. An implementation of this is given in the Appendix.

Here is a summary of the 2-descent procedure.

Proposition 2.4.4 (Complete 2-Descent)
� Let E : Y 2 = (X − A)(X −B)(X − C), A,B,C ∈ Z, ∆ ̸= 0.

� Let µ′ : G/2G → (Q∗/(Q∗)2)×2 given by µ′(A, y) = [A−C
A−B

, A − B], µ′(B, y) =

[B − A, B−C
B−A

], µ′(O) = [1, 1] and µ′(x, y) 7→ [x− A, x−B] (modulo squares).

� Find the image of µ′
p. Consider the image of µ′

p, the map µ′ on the local fields of
Q. Then find local generators for im(µ′

p) by using existing generators of µ′ and
by finding new ones. Use the formula for |Gp/2Gp| to verify that we have enough
generators.

� Find ker(jp).

� Take intersections of ⟨im(µ′
p), ker(jp)⟩ for a set of well chosen p to get back to the

global image of µ′.

� The preimage of µ′ is G/2G, so as with 2-isogeny, we can find the rank.
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2.4.1 An Example

As with the 2-isogeny example, let E : Y 2 = X(X − 5)(X − 7). Recall that Etors(Q) =
(Z/2Z)×2 and that the rank is trivial. Instead of descent by 2-isogeny, let us use
complete 2-descent.

Using the notation introduced before,

µ′ : E(Q)/2E(Q) → (Q∗/(Q∗)2)×2 : (x, y) 7→ [x, x− 5].

Then the point (0, 0) 7→ [35,−5] and (5, 0) 7→ [5,−10]. Finally, (7, 0) is dependent since
(7, 0) = (0, 0)(5, 0) 7→ [35,−5][5,−10] = [7, 2]. Thus

⟨[5,−10], [35,−5]⟩
≤ im(µ′)

≤ ⟨{1,−1, 2, 5, 7}×2⟩
= ⟨[1,−1], [−1, 1], [2, 1], [5, 1], [7, 1], [1, 2], [1, 5], [1, 7]⟩.

We check whether each element on the right are a possible image of µ′.

2.4.1.1 Using Homogeneous Spaces

Following Silverman’s way of complete 2-descent, we need to determine if the equations

az21 − bz22 = 5, az21 − abz23 = 7

have solutions z1, z2, z3 ∈ Q for every pair [a, b] ∈ ⟨±2,±5,±7⟩×2.

We shall consider multiple cases. For each case for some [a, b], we consider whether the
homogeneous spaces have no solutions in some Qp, thus no solutions in Q.

� Clearly, if a < 0 then either −b < 0 or −ab < 0. Thus there are no solutions in R
and so [−a, b] /∈ im(µ′) for any a, b ∈ {1, 2, 5, 7, 10, 14, 35}.

� For [1,−1], we have the equations z21 + z22 = 5 and z21 + z23 = 7. If there was an
rational solution to this system, then there is certainly intgers y1, y2, y3 such that
y21 +y22 = 7y23 by clearing denominators. But, by the sum of two squares theorem,
this requires 7 to have an even exponent in the prime factorisation of 7y23, which
is impossible. Thus [1,−1] /∈ im(µ′).

� For [2, 1], we have 2z21 − z22 = 5 and 2z21 − 2z23 = 7. Clear denominators of the
first equation to get 2y21 − y22 = 5y23. Since 2 is not a square modulo 5, 2y21 ≡ y22
mod 5 implies that y1 ≡ y2 ≡ 0 mod 5, but then v5(2y

2
1 − y22) = 52n for some

positive integer n and so v5(v
2
3) is odd which is impossible. Thus, [2, 1] /∈ im(µ′).

Similarly, [1, 2] gives z21−2z22 = 5 and z21−2z23 = 7. Considering the first equation
modulo 5 gives that [1, 2] /∈ im(µ′). The same argument also works for [1, 7] and
[7, 1]. Noting that −2 ≡ 3 mod 5 is also not a quadratic residue, [1,−2], [1,−7]
also don’t have solutions.
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� If a ≡ b ≡ 0 mod 2, say a = 2a′ and b = 2b′. Note that 2 ∤ a′, b′ since a and b are
square free. The second homogeneous space gives 2a′z21−4a′b′z23 = 7. Considering
this modulo 2, we see that v2(z1) ≥ 0. The first equation gives 2a′z21 − 2b′z22 = 5.
But 0 = v2(5) = v2(a

′z21 − 2b′z22). If v2(z2) ≥ 0, then v2(5) > 0, a contradiction.
So v2(z2) < 0, but then v2(−2b′z22) < 0, so v2(5) < 0, also a contradiction. Hence
none of these even pairs are in im(µ′).

� For [1, 5], we have z21 − 5z22 = 5 and z21 − 5z23 = 7. The second equation implies
that v5(z1) ≥ 0 and v5(z3) ≥ 0 (otherwise 0 = v5(7) < 0). Furthermore the first
equation says that v5(z2) ≥ 0 and so in fact, v5(z1) ≥ 1. But putting this back
into the second equation gives v5(7) = v5(z

2
1 −5z23) ≥ 1 which is impossible. Thus

[1, 5] /∈ im(µ′).

Clearly if b ≡ 0 mod 5 and a ̸≡ 0 mod 5 then the above argument also works.

� Now [5, 1] gives 5z21 − z22 = 5 and 5z21 − 5z23 = 7. The first equation modulo 5
tells us that v5(z

2
2) ≥ 1, so v5(z2) ≥ 1. Then v5(z1) ≥ 0. The second equation

modulo 5 with denominators cleared tells us that the common denominator y
(the minimal integer that clears the denominators of z1 and z2, say y1 = yz1 and
y2 = yz2 such that y1, y2, y ∈ Z and gcd(y1, y2, y) = 1) must be divisible by 5.
But then we have v5(z

2
1y

2 − z23y
2) = v5(7y

2) − 1 ≥ 1. Combining this with the
result from the first equation, v5(z

2
1y

2) = v5(z1)
2 + v5(y

2) ≥ 2, so v5(z
2
3y

2) ≥ 1.
But then gcd(z1y, z3y, y) ≥ 5, which contradicts the fact that y was minimally
chosen.

It is clear that if a ≡ 0 mod 5 and b ̸≡ 0 mod 5 then the above argument still
holds.

� Consider [7, 7]. Then we have 7z21 − 7z22 = 5 and 7z21 − 49z23 = 7. Then combining
these, 49z23−7z22 = −2. Let y be the minimal integer that clears the denominators
of z3 and z2. Then modulo 7, we get that 7 | y. So 49 | −7z22 , and 7 | z2. Thus
z23y

2 + 2(y/7)2 ≡ 0 mod 7. But since −2 is not a quadratic residue, z3 ≡ 0
mod 7, a contradiction on the minimality of y. Thus [7, 7] /∈ im(µ′).

If a = 7 and b ≡ 0 mod 7 such that b/7 is not a quadratic residue modulo 7, then
the argument above with the fact −2(b/7)−1 is not a square says that [7,−7] and
[7, 35] are not in im(µ′).

� Since [7, 2] ∈ im(µ′), [1, 2] /∈ im(µ′) and [7, 1] = [7, 2][1, 2], then [7, 1] /∈ im(µ′).
Similarly, if there is a non-image, multiplying by something in the image gives us
another non-image.

Thus there exists no pairs outside the ones we already know such that [a, b] ∈ im(µ′).
Hence the rank is 0.

We summarise the previous calculation in the following table. If [a, b] ∈ im(µ′) then we
give a preimage, otherwise we write a local field of Q where the homogeneous equations
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do not have solutions. We say “grp” when the result is due to the group structure of
the image. We omit a < 0 for space since all cases are covered by case 1 in R.

b \ a 1 2 5 7 10 14 35 70
1 O Q5 Q5 Q5 grp grp Q5 grp
2 Q5 Q2 Q5 (7, 0) Q2 grp grp Q2

5 Q5 grp grp Q5 grp grp grp grp
7 Q5 grp Q5 Q7 grp grp Q5 grp
10 grp Q2 grp grp Q2 Q2 grp Q2

14 grp Q2 Q5 grp Q2 Q2 grp Q2

35 Q5 grp grp Q5 grp grp grp grp
70 Q5 Q2 grp Q5 Q2 Q2 grp Q2

-1 R grp grp grp grp grp grp grp
-2 Q5 Q2 grp grp Q2 Q2 grp Q2

-5 Q5 grp grp grp grp grp (0, 0) grp
-7 Q5 grp Q5 Q7 grp grp Q5 grp
-10 grp Q2 (5, 0) Q5 grp Q2 grp Q2

-14 grp Q2 Q5 grp Q2 Q2 Q5 Q2

-35 Q5 grp grp Q5 grp grp grp grp
-70 grp Q2 grp Q5 Q2 Q2 grp Q2

2.4.1.2 Without using Homogeneous Spaces

Following Cassels and Flynn’s method.
Since there are four 2-torsion points, |Ep(Fp)[2]| = |E(Q)[2]| = 4. So, we have that

|Ep(Qp)/2Ep(Qp)| =


2, p = ∞;

4, p ̸= 2,∞;

8, p = 2.

First consider R. We have that |E(R)/2E(R)| = 2. A set of representatives for R∗/(R∗)2

is {±1} and that 1 ̸≡ −1. We already know that [1,−1], [1, 1] ≡ [5,−10], [7, 2] ∈ im(µ′).
We already have two elements, so there are no others, in particular, im(µ′

∞) = ⟨[1,−1]⟩.
It follows that im(µ) ≤ ⟨[1,−1], [2, 1], [5, 1], [7, 1], [1, 2], [1, 5], [1, 7]⟩
Next, consider Q5, so |E(Q5)/2E(Q5)| = 4. Then a set of representatives is {1, 5, 2, 10}.
M5 = ⟨[1, 5], [5, 1], [1, 2], [2, 1]⟩. Note that 7 ≡ 2 mod 5, so 7 is in the coset of 2; and −1
is a square in Q5, so is in the coset of 1. The points of order two map to ⟨[5, 10], [10, 5]⟩,
which gives us the four distinct points. Thus these are sufficient generators. So,
im(µ′

5) = ⟨[5, 10], [10, 5]⟩. Furthermore, ker(j5) = ⟨[1,−1], [−1, 1], [14, 1], [1, 14]⟩. So

im(µ′) ≤ ⟨[5,−10], [35,−5], [1,−1], [−1, 1], [14, 1], [1, 14]⟩.

Consider Q7 with representatives {1, 7, 5, 35}. |E(Q7)/2E(Q7)| = 4. Then [5,−10] ≡
[5, 1], [35,−5] ≡ [35, 1] are unique elements that generate a subgroup of order 4, so
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im(µ′
7) = ⟨[5,−10], [35,−5]⟩. Furthermore, ker(j7) = ⟨[1, 2], [2, 1], [−5, 1], [1,−5]⟩ and

thus
im(µ′) ≤ ⟨[5,−10], [35,−5], [1, 2], [2, 1], [−5, 1], [1,−5]⟩.

Taking intersections, we currently have im(µ′) ≤ ⟨[5,−10], [35,−5], [10,−5]⟩.

Finally, consider Q2 with representatives {±1,±5,±2,±10} and ker(j2) = ⟨{1,−7}×2⟩.
|E(Q2)/2E(Q2)| = 8. Note [5,−10] and [35,−5] ≡ [−5,−5] are distinct generators of a
subgroup of order 4. Consider a point (x, y) ∈ E(Q2) with x = 31. Then y2 = 42 · 1209
and taking square roots is valid. This point maps to [31, 26] ≡ [−1, 10] under µ′

2. This
is unique from the other generators, and thus together, these three elements generate
8 elements. So

im(µ′) ≤ {[5,−10], [35,−5], [−1, 10], [7,−1], [1,−7]}.

Taking the intersection, we get im(µ′) ≤ ⟨[5,−10], [35,−5]⟩. Thus the inequality is
actually an equality and rank(E) = 0.
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Chapter 3

Genus 2 Curves

3.1 Definitions

Let k be a field with characteristic not 2.

Definition 3.1.1
A hyperelliptic curve over k is a non-singular curve such that C : Y 2 = F (X) where
F (X) ∈ k[X] is a polynomial.

As mentioned before, we can define the genus of a hyperelliptic curve as follows.

Definition 3.1.2
A genus g hyperelliptic curve is birationally equivalent to a curve C where C : Y 2 =
F (X) such that F is of degree 2g + 1 or 2g + 2 and F has no repeated factors (so that
the discriminant is nonzero). A more detailed discussion is in Section 3.2.1.

For the purpose of this dissertation, we will only consider examples of genus 2 curves
that have the form

C : Y 2 = a0 + a1X + · · ·+ a5X
5 ∈ k[X],

where a5 ̸= 0 and where there are no multiple factors. We shall see in Section 3.2.2
that a curve D : Y 2 = degree 6 in X is birationally equivalent to the above degree 5
case C if there exists a rational point on D.

As with the elliptic curve case, we actually treat C as a projective curve, so there is a
point at infinity ∞.

Unlike elliptic curves, there is no non-trivial group structure on C(k). Instead, we
formally define the Jacobian which happens to be a group. This group can be thought
of as pairs of points as we shall see.

Definition 3.1.3
The Jacobian G = J(C) of a curve C is an algebraic variety which corresponds to Pic0.
This Jacobian is an abelian group.

19
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In the sense of [2] II.3, a divisor group Div is the free abelian group generated by points
in C(k), i.e.

∑
A nAA ∈ Div where A ∈ C(k) nA ∈ Z and almost every nA is 0. An

element D ∈ Div is called principal if there exists a non-zero function f on C(k) such
that f(A) is a root/pole with multiplicity nA.

The Picard group is the group of classes Div/ ∼ where ∼ is the equivalence relation
given by identifying principal divisors. Pic0 are the elements of degree 0 in the Picard
group Pic.

3.1.1 Group Law on the Jacobian

Let C : Y 2 = F (X) be a genus 2 curve (so say F (X) has degree 5). Then the Weierstrass
points are the points invariant under (x, y) 7→ (x,−y) namely the zeros of F (of which
there are at most five) and the point at infinity.

The identity is O which is identified with all points of the form {(x, y), (x,−y)} and
{∞,∞}.

The Mordell-Weil group J(Q) is given by the non-identity elements {(x, y), (u, v)} mod-
ulo O such that either (x, y), (u, v) ∈ C(Q); or (x, y), (u, v) ∈ C(Q(

√
d)) with (x, y)

and (u, v) conjugates over Q and where d ∈ Q∗ \ (Q∗)2.

Negation is given by {(x, y), (u, v)} 7→ {(x,−y), (u,−v)}.

The points of order two are pairs of distinct Weierstrass points, and these generate the
full 2-torsion subgroup. Thus there are at most 15 order two elements.

Given two elements of J(Q), A = {P1, P2} andB = {Q1, Q2}, the sum of these elements
involves finding the unique cubic Y =

∑3
i=0 aiX

i that goes through P1, P2, Q1, Q2 (which
is analogous to the genus 1 case of a line). By substitution, this cubic meets C at six
points (counting multiplicities), Let R1, R2 be the other two points. Then A + B =
−{R1, R2} where negation is as before. This is visually shown in the following diagram.

P1

P2

Q1

Q2

{P1, P2}+ {Q1, Q2} = {R1, R2}

−R1 −R2

R1
R2
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If two of P1, P2, Q1, Q2 are ∞ (say P1 and Q1), then the sum is {P2, Q2}. If one of
them was ∞, then we ensure the projective cubic goes through ∞ by finding the affine
quadratic through the other three points.

Example 3.1.4
Let C : Y 2 = X(X−1)(X−2)(X−6)(X−9) be a genus 2 curve. Let us add the points
{(2, 0), (9, 0)} and {(9/4, 135/32),∞}.

The cubic that goes through these four points must have a zero coefficent ofX3 (to make
sure ∞ is on the projective cubic). This gives Y = −5

2
(X − 2)(X − 9). Substituting

this into C (and cancelling the points corresponding to X = 2, X = 9 right away),

25

4
(X − 2)2(X − 9)2 = X(X − 1)(X − 2)(X − 6)(X − 9)

25

4
(X2 − 11X + 18) = X3 − 7X2 + 6X

0 = −X3 + 15X2 − 233

2
X +

225

2
.

The solutions are X = 9/4 (which we already know) and X = 1
2
(11 ±

√
−79). Thus,

the sum of these two points is
{
(1
2
(11 +

√
−79), 80), (1

2
(11−

√
−79), 80)

}
.

3.1.2 Proof of Group Law

If we take the Picard definition of G, then we clearly inherit a group structure. But
what if we defined the Jacobian and addition by the more concrete method of the
previous subsection. Firstly, it is clear that negation is closed under the group law
(since conjugation commutes with sign changes: −x = −x). And O is indeed the
identity by definition.

Let G be the Jacobian of a genus 2 curve C and A,B ∈ G. If A and B were both
rational, then clearly the unique cubic that goes through their pairs of points is rational.
Since C : Y 2 = F (X) is rational, the intersection with a rational cubic Y = G(X) is
given by the solutions of

G(X)2 = F (X).

The left is a degree 6 polynomial in X and the right is a degree 5 (or degree 6 if F
had degree 6). Thus the six intersection points are solutions to a rational sextic. Four
of these solutions are already known rational points. Thus the final two solutions are
solutions to a rational quadratic, of which roots are conjugate pairs as expected. If the
X coordinates of two points on C are conjugate, then clearly their Y coordinates are
conjugate too. Since negation is closed, A+B ∈ G.

Suppose instead that A is rational but B is not, say A = {P1, P2} and B = {Q1, Q2} so
that Q1, Q2 are conjugates over a quadratic extension of Q. By Lagrange polynomial
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interpolation, the unique cubic going through the points P1 = (x1, y1), P2 = (x2, y2),
Q1 = (x3, y3) and Q2 = (x4, y4) = (x3, y3), is a sum

Y = G(X) =
∑
i

yi

∑
j ̸=i(X − xj)∑
j ̸=i(xi − xj)

.

If i = 1 the terms in the large sum looks like

y1
(X − x2)(X − x3)(X − x3)

(x1 − x2)(x1 − x3)(x1 − x3)
.

Since the product (X−x3)(X−x3) is rational, then the whole term is rational. Similarly
the term i = 2 is also rational. The sum of the third and forth term is

y3(X − x1)(X − x2)(X − x3)

(x3 − x1)(x3 − x2)(x3 − x3)
+

y3(X − x1)(X − x2)(X − x3)

(x3 − x1)(x3 − x2)(x3 − x3)

=
y3(X − x1)(X − x2)(X − x3)(x3 − x1)(x3 − x2)− y3(X − x1)(X − x2)(X − x3)(x3 − x1)(x3 − x2)

(x3 − x1)(x3 − x2)(x3 − x1)(x3 − x2)(x3 − x3)
.

In the denominator, (x3 − x1)(x3 − x1) is rational (and similarly x2). Suppose x3, y3 ∈
Q(

√
d). Then (x3−x3) is some rational number times

√
d. The numerator is y3z1−y3z1

for some z1 ∈ Q(
√
d). But this simplifies to some rational multiple of

√
d. Thus we

can cancel
√
d from the numerator and denominator and be left with a rational cubic

equation in X. As before, substituting Y = G(X) into Y 2 = F (X) yields a rational
sextic. The roots corresponding to P1 and P2 can be factored out of F (X)−G(X)2 = 0
as a rational linear factor, and the conjugate roots corresponding to Q1 and Q2 create
a rational quadratic factor. Thus we are left with a rational quadratic that gives us the
remaining two points of intersection. Thus A+B ∈ G.

Finally, if neither A or B are rational, then we can apply a similar argument to above
to get that addition is truly closed.

The final part is showing that addition is associative. As usual, this is the hardest part.
A similar proof to proving associativity in the elliptic curve case works. This involves
a generalisation of Cayley–Bacharach theorem to higher degrees. Alternatively, we can
get it for free by closely inspecting the Picard group definition of the Jacobian.

3.2 Discussion

3.2.1 Genus

One of the more general ways to define genus is Hurwitz’s theorem (II.5.9 in [2]).
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Theorem 3.2.1 (Hurwitz)
Let φ : C1 → C2 be a non-constant separable map between smooth curves of genera g1
and g2 respectively. Then

2g2 − 1 ≥ (degφ)(2g2 − 2) +
∑

P∈C1(k)

(eφ(P )− 1).

Equality holds if and only if char(k) = 0 or char(k) = p > 0 where p ∤ eφ(P ) for every
P ∈ C1.

Before proving that this definition of genus is consistent, we need a lemma (II.2.6 in
[2]). For our needs, this lemma is sufficient as a defining feature of eφ(P ).

Lemma 3.2.2
Let φ : C1 → C2 as above. For every Q ∈ C2,∑

P∈φ−1(Q)

eφ(P ) = deg(φ).

Corollary 3.2.3
The definition of genus in Hurwitz Theorem is the same as the definition as before.

Proof.
Let the genus of C be g. Let φ : C → P1 (where P1 is the projective line, so has genus
0). This map is given by (x, y) 7→ (1, x). Since both (x, y), (x,−y) ∈ C(k), φ has degree
2. Then Hurwitz’s formula (assuming equality) becomes

2g + 2 =
∑

P∈C(k)

(eφ(P )− 1).

To resolve the right hand side, we note that the preimage of (1, x) ∈ P1 has two points
if y ̸= 0 and one point if y = 0 or the point is a single point at infinity. If we say
the degree of the X part of C is d, then there are d points such that y = 0. Thus the
latter case has eφ(P ) = 2, and the former is 1. If d is odd, there is a single point at
infinity, otherwise when d is even, we have ∞+ and ∞− (which are two separate points
at infinity). Thus, the right is d if d is even and d+ 1 if d is odd. Hence d = 2g + 1 or
d = 2g + 2 as desired.

3.2.2 Degree 6

If instead we have the more general Y 2 = sextic in X of genus 2, we can always bira-
tionally transform this to a degree 5 whenever this sextic has a root in the base field.
Let α be this root. Then take the map

(x, y) 7→
(

1

x− α
,

y

(x− α)3

)
with inverse (x, y) 7→

(
1

x
+ 2,

y

x3

)
.
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Proof.

Write C : Y 2 = (X − α)(a0 + a1X + · · · + a5X
5). Then after the birational map, this

becomes

Y 2

X6
=

(
1

X
+ α− α

)(
a0 + a1

(
1

X
+ α

)
+ · · ·+ a5

(
1

X
+ α

)5
)
,

and so,

Y 2 = a0X
5 + a1(1 + αX)X4 + · · ·+ a5(1 + αX)5,

which is of the desired degree 5 form given at the start of this chapter.

Note that the points of infinity of C : Y 2 = sextic are ∞+ and ∞−. These should be
treated as points in C(Q), so in the Jacobian, {∞+,∞+} ≠ O = {∞+,∞−}.

3.2.3 The Jacobian

As mentioned, the proper way to construct the Jacobian is to use the Picard group.
Knowing the computational aspect is enough for basic calculations, but there is some
theory that is needed for proofs, which we will outline here (taken from main points of
Chapter 2 and 3 of [1]).

Given a generic pair of points (x, y) and (u, v) on C(Q), there are 16 functions (zi)
(given in 2.1.5, 2.1.6, 2.1.7, 2.1.8, 2.1.10, 2.12 of [1]) depending on x, y, u, v and the
coefficients of C that generate a linear space L (in fact, they form a basis for L). Then
the Jacobian J(C) of C is the projective locus of these 16 functions (i.e. the vanishing
set). By Hilbert’s basis theorem, there exists a finite basis of this vanishing set. This
basis involves 72 quadratic polynomials1.

This description of the Jacobian is hard to use, so in Chapter 3 of [1], the Kummer
surface K(C) is introduced. K(C) is defined to be four of the 16 basis elements (zi) as
given by ξi in 3.0.1 of [1]. These 4 functions give rise to biquadratic forms which allow
us to fun either the sum or difference of two elements of G (but these forms cannot
differentiate between the sum or difference). These forms extend to bilinear forms2 Φij.

3.3 Torsion

As with elliptic curves, higher genus Jacobians have finite torsion.

1Which can be found here http://people.maths.ox.ac.uk/flynn/genus2/
jacobian.variety/defining.equations

2Which can be found here http://people.maths.ox.ac.uk/flynn/genus2/
jacobian.variety/bilinear.forms

http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/defining.equations
http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/defining.equations
http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.forms
http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.forms
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Proposition 3.3.1 (Reductions)
Let G = J(Q) be the Jacobian of a curve over Q. If for a prime p, C mod p is non-
singular, then Gtors is isomorphic to a subgroup of G̃p = J̃(Fp) which is the Jacobian
of C̃p = C mod p.

The reduced curve is an elliptic curve when p ̸= 2 and p ∤ ∆. We call these p primes of
good reduction. Note that furthermore, |Gtors| | |G̃p| and the torsion is finite.

For any p, finding the group G̃p is simple. For each x ∈ Fp, find the square root of F (x)
(where the curve is Y 2 = F (X)) if it exists. The difference to the elliptic curves case is
that we then need to check for points in quadratic extensions.

Example 3.3.2
Let C : Y 2 = X(X − 2)(X − 3)(X − 5)(X − 8) be a genus-2 curve. The discriminant
is ∆ = 2123854. Note the six obvious Weierstrass points give rise to 16 elements in the
2-torsion.

First consider p = 7, the reduced curve is C̃7 : Y
2 = X(X − 1)(X − 2)(X − 3)(X − 5),

and so there are still 16 elements in the 2-torsion. Additional points in C̃7(F7) are
(4,±2). Putting these points with the Weierstrass points give 6 points each, and with
themselves 2 points. So we have counted 30 points.

Now, we need to look for points in the quadratic extensions. To do this, take any
quadratic non-residue, say 3. We will find every point (a + b

√
3, c + d

√
3) ∈ C̃7(F49)

where a, b ∈ F7 with b ̸= 0 (since these are the existing points found before, or the
identity). There are 36 such points. Pairing them together as conjugates gives 18
elements. Thus, in total, |G̃7| = 48.

Similarly consider p = 11, the reduced curve is Y 2 = X(X − 2)(X − 3)(X − 5)(X − 8),
which also has 16 elements in 2-torsion. Additional points in C̃11(F11) are (1,±1),
(9,±4) and (10,±1). Adding in 58 pairs of conjugates in C̃11(F112), we get |G̃11| = 128.

The greatest common factor of these is 16, but we already have 16 points of order 2, so
these are the only torsion points and |Gtors| = |G[2]| = 16.

As in [1] 2.2, we have the following equation,

|G̃p| = 1 +
1

2
|Wp|(|Wp| − 1) + |Wp||Rp|+

1

2
|Rp|2 +

1

2
|Tp|

where

Wp = {P ∈ C̃(Fp) : P is a Weierstrass point},
Rp = {P ∈ C̃(Fp) : P is not a Weierstrass point},
Tp = {(a+ b

√
γ, c+ d

√
γ) ∈ C̃(Fp2) : b ̸= 0}

and γ is a fixed quadratic non-residue modulo p. In the formula, the first term accounts
for members of G̃p of the form {P,Q} where both P and Q are Weierstrass points. The
second term is where P ∈ Wp is a Weierstrass point and Q ∈ Rp is not. The third term
accounts for both components being in Rp, and the final term accounts for conjugate
pairs in Tp.
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3.4 Complete 2-descent

As with Elliptic curves, the Mordell-Weil theorem holds, that is, the rank of G is finite.
Thus, we can find this rank. Here, we shall give a full description of complete 2-descent
for genus 2-curves.

Let C : Y 2 =
∏5

i=1(X − ei) where the roots are all in Z and distinct. Let G = J(Q).
We aim to find G/2G.

Define a map µ : C(C) → (Q∗/(Q∗)2)×4 given by

µ′(P ) =



[
∏

j ̸=1(e1 − ej), e1 − e2, e1, e3, e1 − e4], P = (e1, 0);

[e2 − e1,
∏

j ̸=2(e2 − ej), e2 − e3, e2 − e4], P = (e2, 0);

[e3 − e1, e3 − e2,
∏

j ̸=3(e3 − ej), e3 − e4], P = (e3, 0);

[e4 − e1, e4 − e2, e4 − e3,
∏

j ̸=4(e4 − ej)], P = (e4, 0);

[1, 1, 1, 1], P = ∞;

[x− e1, . . . , x− e5], P = (x, y), x ̸= e1, . . . , e4.

Then µ is a homomorphism. Further, define µ′ : G/2G → (Q∗/(Q∗)2)×4 given by
µ′({P,Q}) = µ(P )µ(Q). Then µ′ is an injective homomorphism. Thus G/2G ≃ im(µ′).
Thus it is sufficient to find the image of this map. Note also that

im(µ′) ≤ (⟨−1, 2, p prime : p |
∏
i ̸=j

(ei − ej)⟩)×4.

Thus {µ′(ei, 0) : 1 ≤ i ≤ 5} generate a lower bound for im(µ′). We also add any infinite
generators to this list. We shall use Cassels and Flynn’s method to find an upper bound.

Let p be a prime. Denote J(Qp) as Gp. As in the genus 1 case, there are inclusion maps
ip and jp that map from global to local as in the following commutative diagram.

G/2G M ≤ (Q∗/(Q∗)2)
×4

Gp/2Gp Mp ≤
(
Q∗

p/(Q∗
p)

4
)×2

µ′

ip jp

µ′
p

We will find an upper bound for im(µ′) as in the genus 1 case by taking intersections
of ⟨im(µ′

p), ker(jp)⟩. To find the image in the local case we can use the fact that

|Gp/2Gp| =


|Gp[2]|/4, p = ∞;

|Gp[2]|, p ̸= 2,∞;

4|Gp[2]|, p = 2.

Here is a summary of the 2-descent procedure.
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Proposition 3.4.1 (Complete 2-Descent)

� Let E : Y 2
∏5

i=1(X − ei), ei ∈ Z, ∆ ̸= 0.

� Find µ′ : G/2G → (Q∗/(Q∗)2)×2 as defined above.

� Find the image of µ′
p. Consider the image of µ′

p, the map µ′ on the local fields of
Q. Then find local generators for im(µ′

p) by using existing generators of µ′ and
by finding new ones. Use the formula for |Gp/2Gp| to verify that we have enough
generators.

� Find ker(jp).

� Take intersections of ⟨im(µ′
p), ker(jp)⟩ for a set of well chosen p to get back to the

global image of µ′.

� The preimage of µ′ is G/2G so we can find the rank.

3.4.1 An Example

Let C : Y 2 = X(X − 2)(X − 3)(X − 5)(X − 8) be a genus 2 curve with Jacobian J .
Write G = J(Q).

We can take {(x, 0),∞} for x ∈ {0, 2, 3, 5} as four independent generators of order 2.
We aim to show that these are sufficient generators and that the rank is 0.

µ′ : G/2G → (Q∗/(Q∗)2)×4 : (x, y) 7→ [x, x− 2, x− 3, x− 5].

(i) x = 0 7→ [240,−2,−3,−5] ≡ [15,−2,−3,−5],

(ii) x = 2 7→ [2,−36,−1,−3] ≡ [2,−1,−1,−3],

(iii) x = 3 7→ [3, 1, 30,−2],

(iv) x = 5 7→ [5, 3, 2,−90] ≡ [5, 3, 2,−10].

Let H be the subgroup generated by the above,

H = ⟨[15,−2,−3,−5], [2,−1,−1,−3], [3, 1, 30,−2], [5, 3, 2,−10]⟩.

Then we have

H ≤ im(µ′) ≤ ⟨{1,−1, 2, 3, 5}×4⟩.

Additionally writing Gp for Jp(Qp), |Gp[2]| = |G[2]| = 16. It follows that

|Gp/2Gp| =


4, p = ∞;

16, p ̸= 2,∞;

64, p = 2.
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First consider R where representatives for R∗/(R∗)2 is {±1}. We require two generators.
Clearly (i) ≡ (ii) ≡ [1,−1,−1,−1] is distinct from (ii) = (iv) = [1, 1, 1,−1]. The kernel
is ker(j∞) = ⟨{1, 2, 3, 5}×4⟩. Thus

im(µ′) ≤ ⟨H, {1, 2, 3, 5}×4⟩.

Next, consider Q3 with representatives {±1,±3} and kernel ker(j3) = ⟨{1,−2,−5}×4⟩.
We require four generators. The ones we know from H are (i) = [−3, 1,−3, 1], (ii) =
[−1,−1,−1,−3], (iii) = [3, 1, 3, 1] and (iv) = [−1, 3,−1,−1]. These are sufficient since
looking at the second entries, (iv) are not in the span of the other three; similarly the
forth entry for (ii); and (i), (iii) are clearly distinct. Thus

im(µ′) ≤ ⟨H, {1,−2,−5}×4⟩.

Now, consider Q5 with representatives {1, 2, 5, 10} and kernel ker(j5) = ⟨{±1, 6}×4⟩.
The known generators reduce to (i) = [10, 2, 2, 5], (ii) = [2, 1, 1, 2], (iii) = [2, 1, 5, 2],
(iv) = [5, 2, 2, 10] = (i) · (ii). The first three elements generate a subgroup of order 8
since (i) is the only element with 5 in the first component, and clearly (ii) ̸≡ (iii). To
get the final required generator, note that (1,

√
56) ∈ J(Q5) maps to [1,−1,−2,−4] ≡

[1, 1, 2, 1]. This is not in the span of the other generators because the only way to get
1 in the first coordinate is (ii) · (iii) which is not equivalent. Thus,

im(µ′) ≤ ⟨H, {±1, 6}×4, [1, 1, 2, 1]⟩.

Finally, consider Q2 with representatives {±1,±2,±3,±6} and ker(j2) = ⟨{1,−15}×4⟩.
Then (i) = [−1,−2,−3, 3], (ii) = [2,−1,−1,−3], (iii) = [3, 1,−2,−2] and (iv) =
[−3, 3, 2, 6]. Looking at the first entry, (i), (ii) and (iii) are all distinct and not
the product of each other. And clearly, (iv) ̸= (i) · (iii). Thus these four elements
generate a subgroup of order 16, and we need to find two more generators. Firstly
(27,

√
24 · 423225) ∈ J(Q2) and this maps to [27, 25, 24, 22] ≡ [3, 1, 6, 6]. This is not in

the span of the other generators since it is not equivalent to (iii) or (i) · (iv) (which are
sufficient observations because of the first entry). Secondly, (−2,

√
24 · −175) ∈ J(Q2)

which maps to [−2,−4,−5,−7] ≡ [−2,−1, 3, 1]. Again, this is not in the span of the
previous five generators, so we have the six required generators and

im(µ′) ≤ ⟨H, {1,−15}×4, [3, 1, 6, 6], [−2,−1, 3, 1]⟩.

So im(µ′) is contained in the intersection of the above upper bounds. It remains to
show that this intersection is equal to H.

The last entries of H are {−5,−3,−2,−10} and the span is ⟨−1, 2, 3, 5⟩. Note that
inside the span, only [1, 1, 1, 1] has a last entry of 1. We check for all possible elements
of im(µ′) that have a last entry of 1.

First consider p = 5, we can only affect the last entry of an element in ⟨H⟩ by multiply-
ing by ±6. So the non-identity elements with last entry 1 in ⟨H, {±1, 6}×4, [1, 1, 2, 1]⟩
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is α · [a, b, c, d], α · [1, 1, 2, 1] · [a, b, c, d] where a, b, c ∈ {±1,±6} and α ∈ H with last
entry d ∈ ±1,±6. So we have α ∈ {[6,−1,−30, 6], [6, 6, 6,−6], [1,−6,−5,−1]} and
α · [1, 1, 2, 1] ∈ {[6,−1,−15, 6], [6, 6, 3,−6], [1,−6,−10,−1]}. Note, in particular, after
multiplying by [a, b, c, d], the first and second entry must be one of {±1,±6}.

For p = 3, since the kernel is {1,−2,−5, 10}, for the last entry to be 1, the elements
in H that we multiple by the kernel need to have last entry {1,−2,−5, 10}; namely,
{[15,−2,−3,−5], [3, 1, 30,−2], [5,−2,−10, 10]}. The only ones that after multiplication
give something with first and second entry {±1,±6} are

{[6, 1,−3c, 1], [−6, 1, 30c, 1], [−1, 1,−10c, 1]}, where c ∈ {1,−2,−5, 10}.

Finally, considering p = ∞, the only reductions that have last entry 1 are [1,−1,−1, 1]
and [1, 1, 1, 1]. Since none of the 12 elements in the previous paragraphs have either of
these forms, the only element in the intersection must be the identity.

Suppose for a contradiction that there exists α ∈ im(µ′) such that α /∈ H. Then the
last entry cannot be 1. Since the span of H can have any last entry, there exists β ∈ H
such that it has the same last entry as α. Then α · β has last entry 1. But any element
in im(µ′) with last entry 1 must be [1, 1, 1, 1], so α = β−1 and so α ∈ H, a contradiction.
Thus im(µ′) = H and the rank of G is 0.

3.5 Descent by Richelot Isogeny

As with the elliptic curve case, instead of doing a complete 2-descent, we can do a
descent by isogeny. The genus 2 case is due to Richelot. We also have that complete
2-descent is at least as good as descent by Richelot isogeny. We shall now describe the
process of getting the rank using Richelot isogenies.

First, define C : Y 2 = G1(x)G2(X)G3(X) a genus 2 curve such that G1 and G2 are
quadratics and G3 is either linear or quadratic and let gij be the coefficient of Xj in
Gi. Define C ′′ : ∆Y 2 = L1(X)L2(X)L3(X) where ∆ = det(gij) and

L1(X) = G′
2(X)G3(X)−G2(X)G′

3(X),

L2(X) = G′
3(X)G1(X)−G3(X)G′

1(X),

L3(X) = G′
1(X)G2(X)−G1(X)G′

2(X).

These two curves are isogenous with the maps φ : J(C) → J(C ′′) and φ′′ : J(C ′′) →
J(C) as described in ([1] Ch10 1(ii) p103 and Ch9).

Now, birationally transform C ′′ to a curve C ′ such that the polynomial is monic (the
coefficients of Y 2 and X6 or X5 are 1). Since these will be birationally equivalent, their
Jacobians will be isomorphic. Let the Jacobian of C ′ be G′ and C be G. Let φ′ be the
composition of the birational transformation with the isogeny φ′′.
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As with the other methods of descent, we define a homomorphism onto the square free
rationals: µ : G′/φ(G) → (Q∗/(Q∗)2)×2 by

µ({(x, y), (u, v)}) = [L1(x)L1(u), L2(x)L2(u)],

and the dual µ′ : G/φ′(G′) → (Q∗/(Q∗)2)×2 by

µ′({(x, y), (u, v)}) = [G1(x)G1(u), G2(x)G2(u)].

Sometimes, one of the entries may be undefined (= 0). One trick is to note that
L1(x)L1(u)L2(x)L2(u) ≡ L3(x)L3(u) (modulo squares). Another is to note that µ is a
homomorphism.

Our goal is to find the images of µ and µ′. We know the solutions to Li and Gi

correspond to points of G and G′, so these give us a lower bound (together with any free
generators). To find an upper bound, we do the usual intersections of local reductions.
To know that we have every generator in the local cases, we use the fact that

|G′
p/φ(Gp)| · |Gp/φ

′(G′
p)| =


4, p = ∞;

16 p ̸= 64,∞;

16, p = 2.

Once we know the images, we are able to deduce the structure of G/2G and thus using
the Mordell-Weil theorem, the rank.

3.5.1 An Example

We shall do a decent on the same curve as before, C : Y 2 = X(X − 2)(X − 3)(X −
5)(X − 8) = (X2 − 5X + 6)(X2 − 5X)(X − 8).

Using the notation given before, (X2−5X+6)(X2−5X)(X−8) = G1(X)G2(X)G3(X)
and g10 = 6, g11 = −5, g12 = 1, g20 = 0, g21 = −5, g22 = −5, g30 = −9, g31 = 0 and
g32 = 1. So

∆ = det(gij) = det

 6 −5 1
0 −5 −5
−9 0 1

 = −300.

Furthermore, let

L1 = G′
2(X)G3(X)−G2(X)G′

3(X) = X2 − 16X + 40,

L2 = G′
3(X)G1(X)−G3(X)G′

1(X) = −X2 + 16X − 34,

L3 = G′
1(X)G2(X)−G1(X)G′

2(X) = −12X + 30.

The the curve with isogenous Jacobian is

C ′′ : ∆Y 2 = (X2 − 16X + 40)(−X2 + 16X − 34)(−12X + 30).
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We shall birationally map this curve to a monic curve. Firstly, multiply both sides by
−300 then take the map −300Y 7→ Y to get the curve

Y 2 = −300(X2 − 16X + 40)(−X2 + 16X − 34)(−12X + 30).

Then, multiply by (−300 · 12)4 and use the maps (−3600)2Y 7→ Y and −3600X 7→ X
to get

C ′ : Y 2 = (X2 − 57600X + 518400000)(X2 − 57600X + 440640000)(X − 9000) = L1(X)L2(X)L3(X).

Denote the Jacobian of this curve by G′. Since C ′ is birational to C ′′, their Jacobians
are isomorphic.

Define the usual homomorphism µ : G′/φ(G) → (Q∗/(Q∗)2)×2 by

µ({(x, y), (u, v)}) = [L1(x)L1(u), L2(x)L2(u)],

and the dual µ′ : G/φ′(G′) → (Q∗/(Q∗)2)×2 by

µ′({(x, y), (u, v)}) = [G1(x)G1(u), G2(x)G2(u)].

With µ′, the five points {(x, 0),∞} for x ∈ {0, 2, 3, 5, 8} map to

1. x = 0 7→ [6,−3] (where the second entry is found using the fact that L2(x) =
L1(x)L3(x)),

2. x = 2 7→ [1,−6],

3. x = 3 7→ [30,−6],

4. x = 5 7→ [6,−2],

5. x = 8 7→ [30, 24] ≡ [30, 6] (which is the product of the other four cases, so this
point is redundant).

The first four elements are independent since clearly no two are equal, and the product
of all four is neither trivial nor one of the four generators. Thus they generate a
subgroup of order 16, ⟨[6,−3], [1,−6], [30, 1], [1, 6]⟩ = ⟨[1,−1], [6, 3], [1, 6], [30, 1]⟩. So,
we know that

H ′ = ⟨[1,−1], [6, 3], [1, 6], [30, 1]⟩ ≤ im(µ′) ≤ (⟨1,−1, 2, 3, 5⟩)×2.

We aim to show that im(µ′) is exactly H.

For µ, we claim that the following three elements generate im(µ) ≤ (⟨−1, 2, 3, 5⟩)×2:

1. {(28800− 7200
√
6, 0), (28800 + 7200

√
6, 0)} 7→ [1, 1],

2. {(28800− 3600
√
30, 0), (28800 + 3600

√
30, 0)} 7→ [1, 1],

3. {(9000, 0),∞} 7→ [1, 1].
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We shall resolve im(µ) and im(µ′) using a similar method to that of complete 2-descent
using the commutative diagram.

First, consider the local case R. Then a set of representatives for (R∗/(R∗))2 is {±1}
and ker(j∞) = ⟨{1, 2, 3, 5}×2⟩. We also have that |G′

∞/φ(G∞)|·|G∞/φ′(G′
∞)| = 4, so we

need a total of two generators. The four generators of H ′ map to ⟨[1,−1]⟩, a subgroup
of order 2. The second generator comes from G′

∞ - take {(x, y),∞} such that x = 20000
and y2 ≥ 0, then this maps to [−1,−1]. Thus |G′

∞/φ(G∞)| = |G∞/φ′(G′
∞)| = 2 and

im(µ′) ≤ ⟨[1,−1], ker(j∞)⟩ and im(µ) ≤ ⟨[1,−1], ker(j∞)⟩.
Next, consider Q3 with representatives {±1,±3} and kernel ker(j3) = ⟨{1,−2,−5}×2⟩.
Then

H ′ 7→ ⟨[1,−1], [−3, 3], [1,−3], [3, 1]⟩ = ⟨[1,−1], [−1, 1], [1, 3], [3, 1]⟩.
This has size 16, and since |G′

3/φ(G3)| · |G3/φ
′(G′

3)| = 16, then |G′
3/φ(G3)| = 1. Thus

im(µ) ≤ ker(j3) and im(µ′) ≤ ⟨H ′, ker(j3)⟩.
Now consider Q2 with representatives {±1,±2,±3,±6} and ker(j2) = ⟨{1,−15}×2⟩.
Since |G′

2/φ(G2)| · |G2/φ
′(G′

2)| = 64, we are looking for a total of 6 generators. H ′ gives
us [1,−1], [6, 3], [1, 6] and [−2, 1]. These are independent since they are clearly all differ-
ent and the product of the four is neither trivial nor one of the four. We require two extra
generators. These both come from G2. First, take the point {(−2,

√
24 · −175),∞},

this maps to [20, 14] ≡ [5, 7] ≡ [−3,−1]. This is independent since the only way
to get −3 in the first entry is [−2, 1][6, 3] = [−3, 3] and multiplying by any combi-
nation of [1,−1] and [1, 6] can never make the second entry −1. The second point
is {(−3,

√
24 · −495),∞} which maps to [30, 24] ≡ [7, 6] ≡ [−1, 6]. This is indepen-

dent to the other five generators since there is no way to get −1 in the first entry.
Thus |G′

3/φ(G3)| = 1 and |G3/φ
′(G′

3)| = 64. It follows that im(µ) ≤ ker(j2) and
im(µ′) ≤ ⟨H ′, [−3,−1], [−1, 6], ker(j2)⟩.
We now have enough information to determine im(µ). We know that

H ≤ im(µ) ≤ ker(j3) ∩ ker(j2) ∩ ⟨[1,−1], ker(j∞)⟩.

From p = ∞, we get that either both entries are positive or the first is positive and
second negative. Then taking intersections with p = 2 tells us that im(µ) ≤ ⟨[1,−15]⟩.
But this isn’t included in the p = 3 case since −15 is not a square in Q3. Thus
im(µ) = H is trivial.

Note that p = 2, 3 don’t give us any information about im(µ′) because {−1, 2, 3, 5}×2 is
contained in ⟨ker(j3), H ′⟩ and ⟨ker(j2), H ′, [1,−1], [−1, 6]⟩. Since p = ∞ does not rule
out [1, 5], [1, 2] ∈ im(µ′) \H ′ (as an example), we require more information.

Consider Q5 with representatives {1, 2, 5, 10} and kernel ker(j5) = ⟨{±1,±6}×2⟩. Since
|G′

5/φ(G5)| · |G5/φ
′(G′

5)| = 16, we want 4 total generators. H ′ gives rise to two genera-
tors: [1, 2] and [5, 1]. The point {(x, y),∞} ∈ G5 such that x = 1 maps to [2, 1], which
is independent to the other two. The point {(x, y),∞} ∈ G′

5 such that x = 0 maps to
[2, 1], which is non-trivial. Thus |G′

5/φ(G5)| = 2 and |G5/φ
′(G′

5)| = 8. It follows that
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im(µ′) ≤ ⟨[1, 2], [5, 1], [2, 1], ker(k5)⟩. This bound is the subgroup of everything except
a multiple of 5 in the second entry. Together with p = ∞ (which says the first entry is
positive), we now know that

im(µ′) ≤ ⟨{1, 2, 3, 5} × {±1,±2,±3}⟩.

Since we already know that the rank of C is 0 by complete 2-descent, im(µ′) should be
H. But clearly, we do not have enough information to deduce this when considering all
primes of bad reduction. Thus C is a member of the Tate-Shafarevich group.

3.6 Proof of Descent by Richelot Isogeny

Chapter 9 of [1] explains the whole process of deriving the isogenies. The main idea
is to define C and C ′ as before, then consider an isogeny between the Kummers which
lifts to isogenies between C and C ′. Now, 10.2.ii of [1] gives a concrete description of
the isogenies, which involves matrices of the linear maps. The Richelot Isogeny is a
4-isogeny as in general, four divisors maps to the same divisor.

3.6.1 Proof of homomorphisms

Recall the map µ : G′/φ(G) → (Q∗/(Q∗)2)×2 by

µ({(x, y), (u, v)}) = [L1(x)L1(u), L2(x)L2(u)].

Then this is equivalent to a map

µ̄ : G′/φ(G) → (Q∗/(Q∗)2)×2 : {(x, y), (u, v)} 7→ [d1, d2]

where x, y ∈ Q(
√
d1) and u, v ∈ Q(

√
d2).

Proposition 3.6.1
µ̄ is a homomorphism.

Proof.
Let A = {(x, y), (u, v)} 7→ [d1, d2] and B{(x′, y′), (u′, v′)} 7→ [d′1, d

′
2]. Then clearly,

µ̄(A + B) ∈ Q(
√
d1,

√
d2,
√

d′1,
√

d′2). But after some algebra, we get that the first

coordinate is in fact in Q(
√
d1d′1) and the second Q(

√
d2, d′2). Noting that µ̄ preserves

the identity and µ̄ is fixed under negation, we get that it is a homomorphism.

Proposition 3.6.2
ker(µ̄) is trivial and so µ̄ is injective.

Proof.
An element A of G′ maps to [1, 1] when A ∈ φ(G), so by taking quotient, the map is
injective.

It follows that µ is also an injective homomorphism. These results also hold for the
dual µ′ with identical proofs.
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3.6.2 The formula for |Gp/2Gp|
For simplicity, write G = Gp for a prime p or ∞. Using the theory of formal groups in
7.5 and 7.6 of [1] gives

|Gp/2Gp| =


|Gp[2]|/4, p = ∞;

|Gp[2]|, p ̸= 2,∞;

4|Gp[2]|, p = 2,

which is the formula used in complete 2-descent. By considering isogenies (as in 10.4
of [1]), we also get the formula for descent by Richelot isogeny as follows.

The above shows that G/2G and G′/2G′ and are finite, thus so are G/φ′(G′) and
G′/φ(G). Note that φ′◦φ is the doubling map, so φ′(G′/φ(G)) = φ′(G′)/2G with kernel
ker(φ′)/(ker(φ′) ∩ φ(G)) since the kernel of the doubling map is G[2] and φ(G[2]) =
ker(φ′) ∩ φ(G). It follows from the isomorphism theorem that

|G′/φ(G)| = |φ′(G′)/2G| · | ker(φ′)/(ker(φ′) ∩ φ(G))|.

Additionally, the kernel of the restriction φ(G[2]) is ker(φ) = ker(φ) ∩ G[2] since
ker(φ) ⊆ G[2]. Thus

|G[2]| = | ker(φ′) ∩ φ(G)| · | ker(φ)|.
Combining the above with |G/φ′(G′)| · |φ′(G′)/2G| = |G/2G| gives

|G′/φ(G)| · |G/φ′(G′)| · |G[2]| = | ker(φ)| · | ker(φ′)| · |G/2G|.

Substituting |G/2G| from before and the fact that | ker(φ)| = | ker(φ)| = 4,

|G′
p/φ(Gp)| · |Gp/φ

′(G′
p)| =


4, p = ∞;

8 p ̸= 2,∞;

64, p = 2.

3.7 Proof of Mordell-Weil

We outline a proof of Mordell-Weil theorem which is central to all the descent tech-
niques. It states that G is finitely generated. This is based on [1] Ch11.

Let C be a genus 2 curve written as a product C : Y 2 = G1(X)G2(X)G3(X) as in the
Richelot section.

Lemma 3.7.1
The µ : G′/φ(G) → (Q∗/(Q∗)2)×2 given in the Richelot isogeny section has finite im-
age. Similarly, im(µ′) is finite. In particular, these images are subgroups of Q(S) =
(⟨−1, pi : pi ∈ S⟩)×2 where S = {2, p : p | ∆b1b2b3b

′
1b

′
2b

′
3}. Note that in the case that C

has all it’s roots ei inside Z, then Q(S) coincides with the set

(⟨−1, 2, p prime : p |
∏
i ̸=j

(ei − ej)⟩)×2.
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Proof.
Suppose for a contradiction that there exists [d1, d2] ∈ Q∗/(Q∗)2 such that there exists
p /∈ Q(S) that does not divide either d1 or d2. Without loss of generality, suppose p ∤ d1
(otherwise, renumber the functions Gi).

Let p be the prime ideal above p. Write (zi) so that max |zi|p = 1 by scaling. Let
(z̃i) be the reduction modulo p. Since |

√
d1| < 1, σ(z̃i) = (z̃i). So W̃i(z̃) = z̃ on G̃,

the reduction of J modulo p. But this means one of the points of order 2 map to Õ
under the reduction map. This means two roots of the reduced curves are equal. This
implies the reduced curve has a repeated root, so p is not a prime of good reduction, a
contradiction.

Theorem 3.7.2 (Weak Mordell-Weil)
G/2G is finite.

Proof.
Since the image of µ is finite, G′/φ(G) is finite. Similarly, im(µ′) and G/φ′(G′) is finite.
Now, φ′ ◦ φ is the point doubling map, so G/2G is finite.

To prove the full form of Mrdell-Weil, we need to look at heights ([1] Ch12).

Definition 3.7.3 (Height of a point)
Let P = (xi) ∈ Pn(Q). Choose a representatives for P such that xi ∈ Z and
gcd(x0, . . . , xn) = 1. Then define the height function H : Pn(Q) 7→ Z+ as H(P ) =
maxi{|xi|}.
Definition 3.7.4 (Height on the Jacobian)
Define the height of an element in G as HH : G → Z+ as Hj(A) = H((zi(A))).

Definition 3.7.5 (Height on Kummer surface)
Define Hκ : Z+ : A 7→ H((ξi(A))).

Now, we need to show that these functions are indeed height functions F : G → Z+

that satisfy the following three conditions.

1. For any C ∈ Z+, {A ∈ G : F (A) ≤ C} is finite.

2. There exists C1 ∈ Z+ such that for every A,B ∈ G, F (A + B)F (A − B) ≤
C1F (A)2F (B)2.

3. There exists C2 ∈ Z+ such that for any A ∈ G, F (2A) ≥ F (A)4/C2.

Proof of 3.7.3.
H satisfies the three conditions since H is the height map described in Chapter 17 of
[3].

Proof of 3.7.4.
HJ is equivalent to H2

κ (ie. the same up to scalar multiplication). If Hk indeed satisfies
the three conditions, then clearly for all C, {A ∈ G : H2

κ(A) ≤ C} is finite, so the first
condition is satisfied for HJ . It is also clear that squaring does not affect the second or
third propeties. Thus, we are reduced to proving the Kummer case.
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Proof of 3.7.5.
This is given from the middle of 12.1 of [1] using the properties of the bilinear forms.

Given that G/2G is finite and Hκ satisfies the three properties of heights, we can now
prove Mordell-Weil.

Theorem 3.7.6 (Mordell-Weil)
G is finitely generated.

Proof.
We shall imitate [1] 12.2.

Since G/2G is finite, write G/2G = {B1, . . . ,Bs}. Let A0 ∈ G. Then A0 = 2A1 +Bi0

for some Bi0 ∈ G/2G and A1 ∈ G. We may iteratively continue this by defining
Aj = 2Aj+1 +Bij for some Bij ∈ G/2G and Aj+1 ∈ G.

At each index j,

Hκ(Aj)
4 ≤ C2Hκ(2Aj)

= C2Hκ(Aj−1 −Bij−1
)

≤ C1C2Hκ(Aj−1)
2Hκ(Bj−1)

2

= Hκ(Aj−1)
4

(√
C1C2

Hκ(Bij−1
)

Hκ(Aj−1)

)2

.

Thus if Hκ(Aj−1) > C3 =
√
C1C2max{Hκ(G/2G)}, then Hκ(Aj) < Hκ(Aj−1).

Suppose for a contradiction that Hκ(Aj) > C3 for all j. Then Hκ(Aj) < Hκ(A1).
But since Hκ is a function on the positive integers, this cannot be true for all j, a
contradiction. Thus, for some (minimal) j, Hκ(Aj) ≤ C3. Hence,

A1 = Bi1 + 2A2 = · · · = Bi1 + 2(Bi2 + 2(· · ·+ 2Aj)),

so A1 is a linear combination of Aj andBis. Since {A ∈ G : Hκ(A) ≤ C3} is finite, there
are only a finite number of choices of Aj. So G = ⟨B1, . . . ,Bs, {A ∈ G : Hκ(A) ≤ C3}⟩
is finitely generated.

3.8 Chabauty’s Theorem

Chabauty’s Theorem gives us a bound on the number of points on C(Q) for a curve C.
A theorem by Falting says that this bound is finite if the genus of C is greater than or
equal to 2. We shall give a brief description of the method of Chabauty, as well as an
example and computer code in the Appendix. This follows [1] Chapter 13 and makes
use of existing calculations by Flynn3.

3http://people.maths.ox.ac.uk/flynn/genus2

http://people.maths.ox.ac.uk/flynn/genus2
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Let C : Y 2 = F (X) be a curve of genus 2 with discriminant ∆ and Jacobian G. Suppose
that we already know Gtors and G/2G, and that we can find that the rank of C is 1
using one of the descent techniques. Suppose additionally that we have found a free
generator D such that G = ⟨Gtors,D⟩. Then we can use Chabauty’s method to fully
resolve all the rational points of C as follows.

Let p be any prime that doesn’t divide ∆. Let C̃ be the reduction C modulo p. We
then find G̃ as discussed in the torsion section. Let d be the order of D̃ the image of
D under reduction. Then E = d · D maps to the identity under reduction modulo p.
Thus, any element of G can be written in the form

B = A+ n · E; n ∈ Z, A ∈ U = {B+ i ·D : B ∈ Gtors, 0 ≤ i ≤ p}.

Now, for each A ∈ U , we wish to bound the number of values n ∈ Z such that B =
{P, P}. Since B̃ = Ã, we can look for points Ã of the form {P̃ , P̃} (including the
identity).

The next step is to analyse E(n · L(s)). For the divisor E, find

s = s(E) =

(
s1(E)
s2(E)

)
=

(
z1(E)/z0(E)
z2(E)/z0(E)

)
,

given as follows. Write F (X) = f0 + f1X + · · · + f6X
6 and A = {(x, y), (u, v)}. From

2.1 of [1], we have

F0(x, u) = 2f0 + f1(x+ u) + 2f2xu+ f3xu(x+ u) + 2f4x
2u2 + f5x

2u2(x+ u) + 2f6x
3u3

β0 =
F0(x, u)− 2yv

(x− u)2

G(x, u) = 4f0 + f1(x+ 3u) + f2(2xu+ 2u2) + f3(3xu
2 + u3) + 4f4xu

3 + f5(x
2u3 + 3xu4) + f6(2x

2u4 + 2xu5)

H(x, u) = f0(2x+ 2u) + f1(3xu+ u2) + 4f2xu
2 + f3(x

2u2 + 3xu3) + f4(2x
2u3 + 2xu4) + f5(3x

2u4 + xu5) + 4f6x
2u5

z2 =
G(x, u)y −G(u, x)v

(x− u)3

z1 =
H(x, u)y −H(u, x)v

(x− u)3

z0 = β2
0 .

Next, E(n ·L(s)) is given by the formal power series of exponentials and logarithms as
in 7.2 of [1]:

L2(s) = s1 +
1

3
(−2f4s

3
1 + f1s

3
2) + · · ·

E2(s) = s1 +
1

3
(2f4s

3
1 − f1s

3
2) + · · ·

L2(s) = s2 +
1

3
(−2f2s

3
2 + f5s

3
1) + · · ·

E2(s) = s2 +
1

3
(2f2s

3
2 − f5s

3
1) + · · ·

E(n · L(s)) =
(
E1(n · L1(s))
E2(n · L2(s))

)
.
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Now, let t1 ≡ E1(n · L1(s)) and t2 ≡ E2(n · L2(s)).

For each A found above, define for an arbitrarily well chosen power pi

θ(n) ≡ (Φ42(a, σ(t)))
2 − 4Φ41(a, σ(t)) · Φ43(a, σ(t)) mod pi,

where we have

t =

(
t1
t2

)
and Φij are bilinear forms described in 9.9 of [1]4. The explicit form depends on (ai) ∈
P15(Q) given by (zi(A)) chosen so ai ∈ Z and gcd(ai) = 1, the usual equations don’t
work right of the bat since x = u, so we rewrite these 15 coordinates as a multiple of

a15 = ((x− u)2)

a14 = 1

a13 = (x+ u)

a12 = (x ∗ u)
a11 = (x ∗ u ∗ (x+ u))

a10 = ((x ∗ u)2)
a9 = ((Fx− Fu)/((x− u) ∗ (y + v)))

a8 = ((u2 ∗ Fx− x2 ∗ Fu)/((x− u) ∗ (u ∗ y + x ∗ v)))
a7 = ((u4 ∗ Fx− x4 ∗ Fu)/((x− u) ∗ (u2 ∗ y + x2 ∗ v)))
a6 = ((u6 ∗ Fx− x6 ∗ Fu)/((x− u) ∗ (u3 ∗ y + x3 ∗ v)))
a5 = ((f0xu2 − 4 ∗ Fx ∗ Fu)/((x− u)2 ∗ (f0xu+ 2 ∗ y ∗ v)))
a4 = ((f1xu2 − (x+ u)2 ∗ Fx ∗ Fu)/((x− u)2 ∗ (f1xu+ (x+ u) ∗ v ∗ y)))
a3 = ((x ∗ u) ∗ a5)
a2 = ((gxu2 ∗ Fx− gux2 ∗ Fu)/((x− u)3 ∗ (gxu ∗ y + gux ∗ v)))
a1 = ((hxu2 ∗ Fx− hux2 ∗ Fu)/((x− u)3 ∗ (hxu ∗ y + hux ∗ v)))
a0 = (a25)

where Fx = y2 and Fu = v2, and terms gxu, gux, hxu, hux, f1xu and f0xu are as
described in the code in the Appendix. If A = O, then a0 = 1 and ai = 0 for the
other coordinates. The second input of Φij are local coordinates (bi) corresponding to
t as describe in http://people.maths.ox.ac.uk/flynn/genus2/local/
local.coordinates with s1 = t1 and s2 = t2.

Once we have found θ(n) mod pn, we wish to use the following theorem (13.1.1 in [1]).

Theorem 3.8.1 (Strassman)
Let θ(X) = c0 + c1X + · · · ∈ Zp[[X]] and eventually cj → 0 in Zp. Define a unique l
give by |cl|p ≥ |cj|p for all j ≥ 0 and |cl|p > |cj|p for all j > l. Then there are at most l
values of x ∈ Zp such that θ(x) = 0 and |x|p ≤ 1.

4http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.
forms

http://people.maths.ox.ac.uk/flynn/genus2/local/local.coordinates
http://people.maths.ox.ac.uk/flynn/genus2/local/local.coordinates
http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.forms
http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.forms
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This theorem puts a bound on the possible number of n such that A + n · E is of the
form {P, P}. In the case a bound cannot be found, choose a larger power n of pni.
Once we’ve created such a bound for every A, we have found every non-Weierstrass
points on C(Q).

In general, we have the following result.

Theorem 3.8.2 (Chabauty)
Let C be a curve of genus greater g greater than 1 over Q (or in fact any number field).
If the Jacobian of C has rank less than g, then C(Q) is finite.

So when g = 2, then we require the rank to be 1 and we can do what we did before
to find C(Q). Chabauty’s theorem gives us a constructive way to find rational points.
The stronger theorem by Falting does not yet have a constructive proof.

Theorem 3.8.3 (Falting)
Let C be a curve of genus greater than 1. Then C(k) is finite for any number field k.

3.8.1 An Example

Let C : Y 2 = X(X − 1)(X − 2)(X − 6)(X − 9) be a genus 2 curve. We first prove that
this has rank 1, then find the entirety of C(Q) using Chabauty’s Theorem. We start
with a complete 2-descent.

We have the maximal number of order 2 points. We also have an infinite generator
{(9/4, 135/32),∞}. We claim that these generate G.

Let µ′ be the usual map

µ̃′ : J(Q)/2J(Q) → (Q∗/(Q∗)2)×4 : (x, y) 7→ [x, x− 1, x− 2, x− 6] ≤ ⟨{−1, 2, 3, 5, 7}×4⟩.

For the lower bound, consider {(x, 0),∞} for x ∈ {0, 1, 2, 6} as four independent gen-
rators of order 2, as well as the infinite generator.

(i) x = 0 7→ [3,−1,−2,−6],

(ii) x = 1 7→ [1,−10,−1,−5],

(iii) x = 2 7→ [2, 1, 14,−1],

(iv) x = 6 7→ [6, 5, 1,−10],

(v) {(9/4, 135/32),∞} 7→ [1, 5, 1,−15].

Let H be generated by the above

H = ⟨[3,−1,−2,−6], [1,−10,−1,−5], [2, 1, 14,−1], [6, 5, 1,−10], [1, 5, 1,−15]⟩

so that
H ≤ im(µ′) ≤ ⟨{−1, 2, 3, 5, 7}×4⟩.



40 CHAPTER 3. GENUS 2 CURVES

First, consider R. Clearly H 7→ ⟨[1,−1,−1,−1], [1, 1, 1,−1]⟩ which gives us the 2
required generators and so

im(µ′) ≤ ⟨H, {1, 2, 3, 5, 7}×4⟩).

InQ3,H 7→ ⟨[3,−1, 1, 3], [1,−1,−1, 1], [−1, 1,−1,−1], [−3,−1, 1,−1], [1,−1, 1, 3]⟩. This
generates a subgroup of order 16 (since the last 4 are independent). Thus

im(µ′) ≤ ⟨H, {1,−2,−5, 7}×4⟩.

Next consider Q5. H 7→ ⟨[2, 1, 2, 1], [1, 10, 1, 5], [2, 1, 1, 1], [1, 5, 1, 10]⟩ and all four are
independent generators of a subgroup of order 16. Hence

im(µ′) ≤ ⟨H, {±1, 6, 14}×4⟩.

For Q7, H 7→ ⟨[−1,−1,−1, 1], [1, 1,−1, 1], [1, 1, 7,−1], [−1,−1, 1, 1], [1,−1, 1,−1]⟩. The
last four are sufficient generators for a subgroup of order 16. Thus

im(µ′) ≤ ⟨H, {1, 2,−5,−3}×4⟩.

Finally, in Q2, H 7→ ⟨[3,−1,−2,−6], [1, 6,−1, 3], [2, 1,−2,−1], [6,−3, 1, 6], [1,−3, 1, 1]⟩.
These are all independent, so we require one more generator to reach |Gp/2Gp| = 64.
There exists a point (x, y) ∈ C(Z2) such that x = 28. This maps to [−1, 3,−6, 6] which
is clearly independent from the other five generators (by looking at the first entry).
Hence

im(µ′) ≤ ⟨H, [−1, 3,−6, 6], {1,−7,−15}×4⟩.

We now take the intersection of the upper bounds. Considering the last entries of H,
they span ⟨−1, 2, 3, 5⟩. The only elements of H that has last entry 1 are [1, 1, 1, 1] and
[1,−1,−7, 1]. From the Q7 case, it is clear that the intersection does not have a multiple
of 7 in the last entry. As with the previous complete 2-descent example, it is sufficient
to show that the aforementioned elements of H with last entry 1 are the only elements
with last entry 1 in the upper bound of im(µ′).

If the last entry was 1, then Q7 says that the first entry cannot be a multiple of 7, and
R says it must be positive. Considering Q3, the first entry must be in ⟨−2, 3,−5, 7⟩
and combining this with the information before, we get the first entry is in ⟨3, 10⟩.
But we can rule out multiples of 10 by looking at Q5. So the first entry of any element
[a, b, c, 1] ∈ im(µ′) must have a ∈ {1, 3}. Finally, looking at Q2, in order to get a = 3, we
must have some multiple of [3,−1,−2,−6] with [1, 6,−1, 3] or [1,−3, 1, 1], but neither
of these gives rise to the last entry being 1. So a = 1.

Now, considering second entry, Q7 says that the second entry has no multiple of 7,
so together with Q5, in order to have an element [a, b, c, 1] with a ∈ {1, 3} must have
b ∈ {±1,±6}. But we cannot have multiples of 3 by looking at Q3, so in fact, b ∈ {±1}.
None of the non-kernel of the imµ′

2 give an element of the form [1,−1, c, 1] by noting
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that the only elements in imµ′
2 with last entry 1 is in the span of [1,−3, 1, 1], [1, 3, 1, 1]

and [−6,−3,−6, 1]. Hence b = 1

Finally, looking at the third entry, Q5 says that c ∈ ⟨−1, 2, 3, 7⟩. Now in Q3, the sign
of b and c must be the same and c ∈ ⟨−1,−2,−5,−7⟩ which gives an intersection of
⟨−1,−2, 7⟩. Finally, an element of the form [1, 1, c, 1] must map to the indentity under
the reduction to Q2, so c ∈ ⟨1,−7,−15⟩. The intersection thus gives c ∈ {1,−7} which
means that the only elements with last entry 1 in im(µ′) are [1, 1, 1, 1] and [1, 1,−7, 1]
as desired. Thus G has rank 1.

Let D = {(9/4, 135/32),∞}. We know that G = ⟨Gtors,D⟩ (where the torsion are the
order 2 points). The discriminant is ∆ = 214385272. So consider p = 13 ∤ ∆. Let G̃ be
the Jacobian of C̃ : Y 2 = X5+8X4+10X3+3X2+4X mod 13 be the reduction of C̃
modulo 13. The points on C̃(F13) are, (0, 0), (1, 0), (2, 0), (3,±2), (6, 0), (7,±3),(8,±2),
(9, 0) and (12,±3). The point D maps to D̃ = {(12, 3),∞} which has order 6.

Let E = 6 ·D. Then this maps to the identity in G̃. Thus anything in G can be written
in the form

A+ n · E; n ∈ Z, A ∈ U = {B+ i ·D : B ∈ Gtors, 0 ≤ i ≤ 5}.

For each A ∈ U , we wish to bound the number of n such that A + n · E = {P, P}
for some P ∈ C(Q). Since this element maps to A under the reduction map, we only
need to consider A ∈ U such that the reduction Ã is of the form {P̃ , P̃}. We have the
following five cases.

1. Ã = O+ 0 ·D = O.

2. Ã = O+ 2 ·D = {(12, 3), (12, 3)}.
3. Ã = O+ 4 ·D = {(12, 3), (12, 3)}.
4. Ã = {(0, 0), (9, 0)}+ 1 ·D = {(12, 3), (12, 3)}.
5. Ã = {(0, 0), (9, 0)}+ 5 ·D = {(12, 3), (12, 3)}.

These points were found using MAGMA code as in the appendix. Of these, only
the first three cases lift back to a point of the form {P, P}. These correspond to
{(9/4, 135/32), (9/4, 135/32)}, {(9/4,−135/32), (9/4,−135/32)} and O.

Now we find E(n · L(s)). Firstly (using Sage),

s =


56583292739976842432297097662790629690764708391248659059829860387798941947660/
1553808132581617195083978115837544710530555239651242589881923745161720450996961

−44859319762464961791713235585743308195018639601161989980285909365481460300720/
1553808132581617195083978115837544710530555239651242589881923745161720450996961

 .

Thus |s1|13 = 13−1 and |s2|13 = 13−1.

Arbitrarily pick a power, say 134 and consider E(n ·L(s)) mod 134. Note that we can
ignore all terms with degree greater or equal to 4 since these will always be 0 mod 134
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(since we shall only begin dividing by 13 in the factorial part when we get to terms
with degree ≥ 13). Using sage, we get

s ≡
(
16081
18044

)
, L(s) ≡

(
5096
9256

)
, E(n · L(s)) ≡

(
5096n+ 10985n3

9256n+ 8788n3

)
,

where these are all modulo 134.

Writing t as the local parameter for n ·E, t1 and t2 are power series in n over Z13 given
by

t1 ≡ 5096n+ 10985n3, t2 ≡ 9256n+ 8788n3 mod 134.

Note that any monomial in t1 and t2 with a degree greater or equal to 4 vanishes modulo
134. We now consider the three cases arising from different choices of A.

Case 1

A = {(9/4, 135/32), (9/4, 135/32)}. Finding integers (ai) such that gcd(ai) = 1 and
(ai) = (zi(A)),

(ai) = (1237984225, 157653252, 31836016, 45599760,−866880, 9007360, 3405888,

2135808, 1225728, 667648, 1679616, 1492992, 331776, 294912, 65536, 0).

Thus, plugging this all into the formulae for Φij, we get

θ(n) ≡ (Φ42(a, σ(t)))
2 − 4Φ41(a, σ(t)) · Φ43(a, σ(t))

≡ 25116n+ 17238n2 + 17576n3 mod 134.

Since |25116|13 = 13−1, |17238|13 = 13−2, |17576|13 = 13−3 and |cj|13 ≤ 13−4 for all
coefficients of terms of degree j ≥ 4. By Strassman’s Theorem on the 1th term, there
is one solution to n ∈ Z13, namely n = 0.

Case 2

The case A = {(9/4,−135/32), (9/4,−135/32)} is identical to the first case with the
change n 7→ −n. So there is again only one solution, n = 0.

Case 3

A = O. Considering 134 is not enough to deduce anything useful from Strassman (since
θ mod 134 is trivial). So consider 138. We get

θ(n) = 704714114n6.

Since |704714114|13 = 13−7, and every other coefficient has absolute value ≤ p−8, we
can use Strassman on the 6th term to bound the number of solutions of θ to ≤ 6.
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Observing that θ(n) mod Z13 has a leading term of degree 6, we can factor out n6

in θ(n), and so n = 0 is a solution of multiplicity 6 and is the only solution of θ by
Strassman.

Hence after considering all three cases, we have that (9/4, 135/32) and the Weierstrass
points are the only rational points.
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Chapter 4

Advanced Topics

4.1 Genus 3 Hyperelliptic Curves

From our previous discussion on genera, a genus 3 hyperelliptic curve is a curve C : Y 2 =
F (X) where F is of degree 7 or 8 with no repeated factors. Note that not all genus
3 curves are birational to a hyperelliptic curve (but there is an equivalence in genus 1
and 2 cases).

Let J be the Jacobian of C and G = J(Q). Then the creation of G can be done in a
similar way to genus 2 curves. At the end of such a derivation, an element of G is a
triple of points. In particular, Mordell-Weil holds, and so complete 2-descent on genus
3 hyperelliptic curves can be done in a similar way to before as shown in [6].

4.2 Example of Complete 2-Descent on Genus 3

Curves

Consider the genus 3 curve C : Y 2 = X(X − 2)(X − 4)(X − 5)(X − 6)(X − 8)(X − 10)
with Jacobian J . We shall prove that G = J(Q) has trivial rank.

For each element given by a Weierstrass point and the point at infinity for the other
two defining points, the map µ′ : G/2G → (Q∗/(Q∗)2)×6 maps

(i) x = 0 7→ [3,−2,−1,−5,−6,−2],

(ii) x = 2 7→ [2,−1,−2,−3,−1,−6],

(iii) x = 4 7→ [1, 2, 6,−1,−2,−1],

(iv) x = 5 7→ [5, 3, 1,−1,−1,−3],

(v) x = 6 7→ [6, 1, 2, 1, 6,−2],

(vi) x = 8 7→ [2, 6, 1, 3, 2,−1],

(vii) and x = 10 7→ [10, 2, 6, 5, 1, 2] which is the product of the previous six.

45
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The first six elements of (Q∗/(Q∗)2)×6 are clearly independent (the only way to get 1
in the first two entries is (i) · (ii) · (iii) · (v) which isn’t the identity). Let these first six
elements generate H of order 26. Then

H ≤ im(µ′) ≤ ⟨{1,−1, 2, 3, 5}×6⟩.

Writing Gp for Jp(Qp), we have the similar result to the genus 2 case that

|Gp/2Gp| =


23, p = ∞
26, p ̸= 2,∞
29, p = 2

.

If p = ∞, then the generators of H map to [1,−1,−1,−1,−1,−1], [1, 1, 1,−1,−1,−1]
and [1, 1, 1, 1, 1, 1,−1] which are clearly independent and generate a subgroup of order
23 as needed. So

im(µ′) ≤ ⟨H, {1, 2, 3, 5}×6⟩.
Next consider p = 3, where the generators map to [3, 1,−1, 1, 3, 1], [−1,−1, 1,−3,−1, 3],
[1,−1,−3,−1, 1,−1], [−1, 3, 1,−1,−1,−3], [−3, 1,−1, 1,−3, 1], [−1,−3, 1, 3,−1,−1]
respectively. We have that (i) · (v) ≡ (ii) · (iv) · (vi) so that the elements of H gener-
ate a subgroup of order 25, and so we need one more generator. There exists a point
(7, y) ∈ C(Q3). Under µ′, this maps to [1,−1,−1, 1,−1,−3] which is independent to
the previous. Hence

im(µ′) ≤ ⟨H, [1,−1,−1, 1,−1,−3], {1,−2,−5}×6⟩.

Now for p = 5, the generators of H map to [2, 2, 1, 5, 1, 2], [2, 1, 2, 2, 1, 1], [1, 2, 1, 1, 2, 1],
[5, 2, 1, 1, 1, 2], [1, 1, 2, 1, 1, 2] and [2, 1, 1, 2, 2, 1]. These are all independent and thus
generate a subgroup of order 26 as required. Hence

im(µ′) ≤ ⟨H, {1,−1, 6}×6⟩.

Finally if p = 2, the generators map to [3,−2,−1, 3,−6,−2], [2,−1,−2,−3,−1,−6],
[1, 2, 6,−1,−2,−1], [−3, 3, 1,−1,−1,−3], [6, 1, 2, 1, 6,−2] and [2, 6, 1, 3, 2,−1]. It is
easy to check that these are all independent, so we require three more generators. Then,
there exists points (1, y1), (16, y2), (28, y3) ∈ C(Q2) that map to [1,−1,−3,−1, 3, 1],
[1,−2, 3, 3,−6, 2] and [−1,−6, 6,−1, 6,−3] respectively. These are all independent and
generate a subgroup of order 29, so

im(µ′) ≤ ⟨H, [1,−1,−3,−1, 3, 1], [1,−2, 3, 3,−6, 2], [−1,−6, 6,−1, 6,−3], {1,−15}×6⟩.

Looking at the second entry of elements of H, we have ⟨−1, 2, 3⟩. Now by looking at
Q5, the second entry of im(µ′) cannot be a multiple of 5. Thus, it is sufficient to show
that the elements of im(µ′) with second entry 1 are in H. There are 23 such elements
in H, namely

⟨(v), (i) · (ii) · (iii), (iii) · (iv) · (vi)⟩ = ⟨[6, 1, 2, 1, 6,−2], [6, 1, 3,−15,−3,−3], [10, 1, 6, 3, 1,−3]⟩.
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Looking at the third entry, R tells us that the third entry im(µ′) must be positive, and
Q5 that it is not a multiple of 5, thus we have ⟨2, 3⟩. Since the third entry of the three
elements of H given before with second entry 1 generate ⟨2, 3⟩, it is sufficient to show
that elements with second and third entry 1 of H and im(µ′) coincide. The elements of
H that have this property are

{[1, 1, 1, 1, 1, 1], [10, 1, 1,−5,−2,−2]}.

Now, in Q3, the elements with ones in the second and third entry are generated by
[−1, 1, 1, 1,−1, 1] and [3, 1, 1,−3,−3,−1]; which can be lifted back up by taking into
account the kernel of the projection ⟨{1,−2,−5}×6⟩. Thus the possible forth entries are
⟨−2,−3,−5⟩. Similarly, in Q5 we have these generators: [2, 1, 1, 2, 2, 1], [2, 1, 1, 2, 1, 2],
[2, 1, 1, 5, 2, 2] and [10, 1, 1, 5, 1, 1] together with kernel ⟨{1,−1, 6}×6⟩ which has the pos-
sible forth entries ⟨−1, 5, 6⟩. Putting these two together, we thus have ⟨−5, 6⟩ as the
possible forth entry in im(µ′). But taking Q2 into account, it is clear that no multiple
of 2 is possible, so in fact, only {1,−5} is possible.

Note that Q5 tells us that im(µ′) does not contain elements with fifth and sixth en-
tries that are divisible by 5. Now, elements with second and third entries 1, forth
in {1,−5} and fifth and sixth not a multiple of 5 in the upper bound of im(µ′)
given by considering Q3 must be generated by [−1, 1, 1,−1, 1] and the kernel. Namely
[⟨2, 5⟩, 1, 1, ⟨−5⟩, ⟨−1, 2⟩, ⟨−2⟩].

Consider the upper bound given by Q2 generated by nine elements (label these (i) up to
(ix) in the order presented) together with kernel {1,−15}. Taking intersections with the
previous paragraph, the last entry must be in {1,−2}, so we must eliminate anything
that divides 3, namely (ii), (iv) and (ix). Multiplying these pairwise will eliminate
multiples of 3, so we can reduce these three elements to two elements by replacing them
with (x) = (ii) · (iv) and (xi) = (ii) · (ix).

Continuing in a similar fashion, to get ⟨−1, 2⟩ in the 5th entry requires us to eliminate
multiples of 3 which are present in (i), (v), (vii), (viii) and (xi). Multiplying (i) with
the others reduces these five elements to four. The next steps are to eliminate the
two elements with negative 4th entry, then three elements with negative 3rd entry,
two elements with non-trivial 3rd entry and finally the two elements with non-trivial
second entry. This leaves us with two elements: [1, 1, 1, 1, 1,−1] and [−6, 1, 1, 3,−2,−2].
The first is not possible since the last entry must be 1 or −2. Thus we are left with
[−6, 1, 1, 3,−2,−2] which, after appropriately multiplying by a kernel element (made
up of 1s and −15s), leaves us with the only option:

⟨[10, 1, 1,−5,−2,−2]⟩.

These are the only elements of im(µ′) with second and third entry 1. Since this coincides
with those of H, we have proved that im(µ′) = H. Hence rank(G) = 0.
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4.3 Finding Large Torsion

In the elliptic curves case, Mazur’s theorem gives a bound on the size of the torsion.
But in higher genera, there is currently no known analogous result. In this section, we
find a family of genus 2 curves with an element of order 14 in the Jacobian.

Following Example 8.3.3 of [1], let C be a genus 2 curve of the form

C : Y 2 = (A(X))2 − λX(X − 1)4,

where A(X) ∈ Q(t)[X] is a quadratic and λ ∈ Q(t). Let P0 = {(0, A(0)),∞} and
P1 = {(1, A(1)),∞}. Then the divisor of Y − A(X) gives

1 · P0 + 4 · P1 = O.

Suppose we have the relation that

4 · P0 + 2 · P1 = O.

Then

M ·
(
P0

P1

)
=

(
O
O

)
, M =

(
1 4
4 2

)
.

Note that det(M) = −14, so clearly, |P0|, |P1| | 14. But these two elements are clearly
not the identity, and if we ensure that A(0) ̸= 0 and A(1) ̸= 0, then both of these
elements cannot have order 2 either. So they either have order 7 or 14.

We wish to find a function Y − v(X), where v is a cubic in Q(t)[X], whose divsor gives
rise to the above conditions on P0 and P1. Subsituting this relation into the relation of
C, the difference of the two sides of C must be X4(X − 1)2, that is,

v(x)2 − A2 + λX(X − 1)4 = X4(X − 1)2.

Rearranging gives

(v + A)(v − A) = X(X − 1)2(X3 − λ(X − 1)2).

Letting λ = t and finding the difference of

(v − A) = X(X − 1)2

(v + A) = (X3 − λ(X − 12))

gives that

A(X) =
1

2
((t− 2)X2 + (1− 2t)X + t), λ = t.

This gives a family of genus 2 curves with a genus containing at least a 7 torsion element,
since A(1) = −1/2 and A(0) = −t (both non-zero).
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Proposition 4.3.1
For any t ∈ Q and t ̸= 0, the Jacobian of the genus 2 curve

Ct : Y
2 =

1

4
((t− 2)X2 + (1− 2t)X + t)2 − tX(X − 1)4

has an order 7 element.

Using Magma code (Section A.5), we see that for |t| ≤ 100, the torsion of J(Ct) is 14
most of the time, except 28 for t ∈ {2, 3, 6, 12, 18, 24, 30, 42, 45, 56, 72, 90} and 56 for
t = 20. Emperical data also suggests that |P0| = 7 and |P1| = 14.

In fact, |P1| is always 14. Suppose for a contradiction that P1 had order 7 instead. Then
the first relation ofM says 1·P0−3·P1 = O. But this means that {(0, A(0)), (1, A(1))} =
{(1, A(1)), (1, A(1))} which is a contradiction.

Similarly, |P0| is always 7. Suppose 14 · P0 = O. Then the second relation of M gives
−2 ·P0+6 ·P1 = O. Using the first relation five times, −7 ·P0−14 ·P1 = O. Simplifying,
we see that |P0| = 7.

Thus we instead have the following more specific statement.

Corollary 4.3.2
For any t ∈ Q and t ̸= 0, define the following genus 2 curve

Ct : Y
2 =

1

4
((t− 2)X2 + (1− 2t)X + t)2 − tX(X − 1)4.

Let Jt be the Jacobian of Ct and Gt = Jt(Q). Let P0 = {(0, A(0)),∞} and P1 =
{(1, A(1)),∞}. Then P0, P1 ∈ G, |P0| = 7 and |P1| = 14.

In general, one way to easily find such a series of genus g curves starts with finding a

matrix M =

(
a b
c d

)
such that a+b = 2g+1, c+d = 2g+2 and min{a, c}+min{b, d} =

g + 1. Now we construct the curve

Ct : Y
2 = (A(X))2 − tXa(X − 1)b.

Write e = min{a, c} and f = min{b, d}; and define

A(X) =
1

2

(
(Xe(X − 1)f )− (Xa−e(X − 1)b−f − tXc−e(X − 1)d−f )

)
which has the required degree g (since we have cancellation of Xg+1). Write J as the
Jacobian of Ct and G = J(Q). Then two elements of the Jacobian are P0 given by the
divisor (0, A(0)) with ∞ and P1 as (1, A(1)) with ∞. At this stage, once we check that
Ct does not decrease in genus, we can deduce that Ct is indeed a genus g hyperelliptic
curve and that

1 < |P0|, |P1| | det(M).

If det(M) is prime, then clearly the elements have order equal to this prime. Otherwise,
we require some extra observations (such as the ones given in the genus 2 example) to
deduce the exact order of P0 and P1, though we always know that the order is at least
the smallest prime dividing the determinant.
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Appendix A

Code

In this dissertation, I used three programming languages: Python1, Sage2 and Magma3.
Maple4 is also widely used but is under a paywall and the previous three languages are
sufficient for the purpose of this dissertation. Pros and cons of the following are as
follows.

� Python is easy to learn, open source and widely used and documented. But it
not handle symbolic calculations well and is mainly useful here for brute force
calculations.

� Sage has identical syntax to Python and so basic Python code works in Sage (in
particular the Python code snippet given later on). It is also open source. Sage
is good at symbolic calculations and has basic elliptic curve functionality.

� Magma is good at more complex arithmetic geometry. But it is closed source and
behind a pay-wall, though there is an online calculator available on their website
which is sufficient for this dissertation.

In Python and Sage, a comment line suceeds #. In Magma, comments are given by //.
In Magma, every line ends with ; and this character prints any variable given before it.
To print in Python and Sage, use print(). Multiplication in all cases is *. Powers
are ** in Python and Sage, and ˆ in Sage and Magma.

We shall go through useful snippets of code in a similar order to the main body of this
dissertation.

A.1 Elliptic Curves

Let us use the example E : Y 2 = X(X − 5)(X − 7) = X3 − 12X2 + 35X. Using Sage,
we can find information about this curve.

1https://www.python.org/
2https://sagecell.sagemath.org/
3http://magma.maths.usyd.edu.au/calc/
4https://www.maplesoft.com/
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E=EllipticCurve([0,-12,0,35,0]) # Defines the ec E
print(E) # Prints E
print(factor(E.discriminant())) # The discriminant of E
print(E.rank()) # The rank of E
print(E.torsion_points()) # The torsion of E

This tells us that the elliptic curve E has descriminant 265272, rank 0 and torsion
Etors(Q) = {O, (0, 0), (5, 0), (7, 0)} = E(Q)[2]. Note that EllipticCurve([0,a
,0,b,c]) defines an elliptic curve Y 2 = X3 + aX2 + bX + c, the other two entries
are for cross terms with Y . And, E.torsion_points() gives points in projective
form.

A.2 p-adic point search

Using Python, we can brute force whether a polynomial in X has a non-zero p-adic
square root at a point x. This is useful for finding extra generators of Gp.

p=2 # Prime p
X=28 # Specific value of x
F=X*(X-1)*(X-2)*(X-6)*(X-9) # Polynomial in X

# Function to list squares modulo p
def squares(p):

sq=[]
i=0
while i<p: # For every i<p add iˆ2 to the list of

squares
sq.append(i**2%p)
i=i+1

return(sq)

# Function to find the largest power of p in an integer
k and output k/pˆn and power n

def largestpower(k):
n=0
k=k+0.0
k1=k
while (k1.is_integer()):

k1=k/p**n
n=n+1
if k1==0:

break
k=k1*p
n=n-2
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return(k,n)

sq=squares(p) # Squares mod p
k,n=largestpower(F) # Decomposition of F(x)

if p==2: # Catches the case of p=2 so we can apply mod 8
q=8

else:
q=p

print(F) # Print F(x)
print(n,k,k%q) # Print n=v_p(F(x)), k=F(x)/v_p(F(x))pˆn

and k mod p (or mod 8 if p=2)

# Use Prop 2.4.2
if k%q in sq and n%2==0:

print(F,"is a non-zero square in Z_"+str(p))

A.3 Genus 2 Curves

We can do calculations on genus 2 curves using Magma. Let us use the curve C : Y 2 =
X(X − 2)(X − 3)(X − 5)(X − 8).

_<x>:=PolynomialRing(Rationals()); //Base field
pol:=x*(x-2)*(x-3)*(x-5)*(x-8);
C:=HyperellipticCurve(pol); //Our Curve
J:=Jacobian(C); //Jacobian
RankBounds(J); //Rank Bound

This outputs the rank bound as two numbers, the lower and upper bounds for the rank.
In this case, both are 0, so we definitely have a rank 0 curve. As long as we are able
to do complete 2-descent, the upper and lower bounds will be equal. We can then find
rational points and elements of the Jacobian respectively, up to a certain bound.

Pts:=Points(C:Bound:=100); Pts; // Rational points
PtsJ:=Points(J:Bound:=100); PtsJ; // Elements of

Jacobian

The rational points are outputed as a projective point. The Jacobian is outputted
as projective polynomials, so if the last coordinate is 0, that point is the identity.
Otherwise, the roots of the first polynomial give the x, u of the divisor {(x, y), (u, v)}
as discussed here https://magma.maths.usyd.edu.au/magma/handbook/
text/1560.

We can define elements of the Jacobian using rational points as follows.

https://magma.maths.usyd.edu.au/magma/handbook/text/1560
https://magma.maths.usyd.edu.au/magma/handbook/text/1560
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A:=Pts[2]-Pts[1];A; // {(0,0),id}
B:=Pts[2]-Pts[3];B; // {(0,0),(2,0)}

And addition is obvious.

A+B; // {(2,0),id}

We can also find the torsion points and the discriminant.

TorsionSubgroup(J); // Torsion
Discriminant(C); // Discriminant

A.4 Chabauty’s Method

We shall present the code used for the previous example. We first use Magma to find
out the rank of the curve.

_<x>:=PolynomialRing(Rationals()); //Base field
pol:=x*(x-1)*(x-2)*(x-6)*(x-9);
C:=HyperellipticCurve(pol); //Our Curve
J:=Jacobian(C); //Jacobian
RankBounds(J); //Rank Bound

We get a rank of 1. We can then use Magma to find rational points on C up to a bound
and define the divisor D of infinite order.

Pts:=Points(C:Bound:=100); Pts; //Rational points
D:=(Pts[8]-Pts[1]);D;Order(D); //D

Magma already has Chabuty built in, so we may run Chabauty(D); to get a list
of all rational points. Instead, let us do it “by-hand”. The first step is to consider C
modulo a good prime (13 in this case).

_<x>:=PolynomialRing(FiniteField(13)); //Base field
pol:=x*(x-1)*(x-2)*(x-6)*(x-9);
C:=HyperellipticCurve(pol); //Our Curve
J:=Jacobian(C); //Jacobian
Pts:=Points(C); //Points
D:=Pts[13]-Pts[1]; //Point corresponding to D mod 13

Then we find every A that reduces to a point of the form {P̃ , P̃}.

//List all 2-torsion
orderPoints:=[Order(Points(J)[i]) eq 2 select i else 0:i

in [1..#Points(J)]];
twoTor:=[Points(J)[1]];
for i in orderPoints do

if not(i eq 0) then
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twoTor:=Append(twoTor,Points(J)[i]);
end if;

end for;

//Iterate over all choices for P=B+i*D
for B in twoTor do

for i in [0..5] do
P:=B+i*D;
//check if defining polynomial of the x-

coordinate of P has exactly 1 root of multiplicity 2
if #Roots(P[1]) eq 1 and Roots(P[1])[1][2] eq 2

then
Roots(P[1]);
B; i; P; //Output B, then i, then P
end if;

end for;
end for;

Bringing these back up to Q, we can find the two non-identity points of the form {P, P}.
//Define objects

_<x>:=PolynomialRing(Rationals()); //Base field
pol:=x*(x-1)*(x-2)*(x-6)*(x-9);
C:=HyperellipticCurve(pol); //Our Curve
J:=Jacobian(C); //Jacobian
Pts:=Points(C:Bound:=100ˆ2); Pts; //Points

D:=(Pts[8]-Pts[1]); D; //Point corresponding to D

//Four points found before
B2:=(Pts[1]-Pts[1]);B2+2*D;
B3:=(Pts[1]-Pts[1]);B3+4*D;B3-2*D;
B4:=(Pts[2]-Pts[1])-(Pts[1]-Pts[6]);B4+1*D;
B5:=(Pts[2]-Pts[1])+(Pts[6]-Pts[1]);B5+5*D; B4-D;

We can now move on to computing the local parameters. For this, we use Sage. First
define {(x, y), (u, v)} = E.

x = (3*145940556273707085441196519099/59283442892902672014888341476) -
(3*2340/59283442892902672014888341476)*sqrt
(-3182434692678204560739929758205767407808798573246230)

u = (3*145940556273707085441196519099/59283442892902672014888341476) +
(3*2340/59283442892902672014888341476)*sqrt
(-3182434692678204560739929758205767407808798573246230)

y=1/1711447333809472145468719630736594643349338724948367240309298312164333248
*(2*155406215716448164939712279680108237163975878095358229703839535871809063735
+1928194356507392461844527917380068711252339505148*sqrt
(-2*1591217346339102280369964879102883703904399286623115))

v=1/1711447333809472145468719630736594643349338724948367240309298312164333248
*(2*155406215716448164939712279680108237163975878095358229703839535871809063735
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-1928194356507392461844527917380068711252339505148*sqrt
(-2*1591217346339102280369964879102883703904399286623115))

Now we calculate s1 and s2 according to page 7 of [1]. Note the use of full_simplify
which simplifies a symbolic expression (in terms of roots etc).

f0,f1,f2,f3,f4,f5,f6=0,108,-192,101,-19,1,0 # Coefficients of F(X)

F0=2*f0+f1*(x+u)+2*f2*x*u+f3*x*u*(x+u)+2*f4*xˆ2*uˆ2+f5*xˆ2*uˆ2*(x+u)+2*f6*xˆ3*uˆ3
B0=(F0-2*y*v)/(x-u)ˆ2
delta=B0ˆ2

a,b=x,u
Gxu=4*f0+f1*(a+3*b)+f2*(2*a*b+2*bˆ2)+f3*(3*a*bˆ2+bˆ3)+4*f4*a*bˆ3+f5*(aˆ2*bˆ3+3*a*bˆ4)

+f6*(2*aˆ2*bˆ4+2*a*bˆ5)
a,b=u,x
Gux=4*f0+f1*(a+3*b)+f2*(2*a*b+2*bˆ2)+f3*(3*a*bˆ2+bˆ3)+4*f4*a*bˆ3+f5*(aˆ2*bˆ3+3*a*bˆ4)

+f6*(2*aˆ2*bˆ4+2*a*bˆ5)
gamma0=(Gxu*y-Gux*v)/(x-u)ˆ3

a,b=x,u
Hxu=f0*(2*a+2*b)+f1*(3*a*b+bˆ2)+4*f2*a*bˆ2+f3*(aˆ2*bˆ2+3*a*bˆ3)+f4*(2*aˆ2*bˆ3+2*a*b

ˆ4)+f5*(3*aˆ2*bˆ4+a*bˆ5)+4*f6*aˆ2*bˆ5
a,b=u,x
Hux=f0*(2*a+2*b)+f1*(3*a*b+bˆ2)+4*f2*a*bˆ2+f3*(aˆ2*bˆ2+3*a*bˆ3)+f4*(2*aˆ2*bˆ3+2*a*b

ˆ4)+f5*(3*aˆ2*bˆ4+a*bˆ5)+4*f6*aˆ2*bˆ5
gamma1=(Hxu*y-Hux*v)/(x-u)ˆ3

z0=delta
z1=gamma1
z2=gamma0

s1=(z1/z0).full_simplify()
s2=(z2/z0).full_simplify()

print(s1)
print(s2)

We first define our base field and get s1, s2 mod 134.

Zp=Integers(13ˆ4)
print(Zp(s1))
print(Zp(s2))

Then we compute E(n·L(s)) mod 134. Note that in the following, the formal logarithm
and exponential are defined here up to powers of 7 (from 5 and 6 respectively), though
we only need them up to powers of 4 as higher powers vanish. The only modification
needed from the Maple code on those webpages is to get rid of the colon in := and at
the end of the line.

# From http://people.maths.ox.ac.uk/flynn/genus2/local/
log

Log1=
Log2=

5http://people.maths.ox.ac.uk/flynn/genus2/local/log
6http://people.maths.ox.ac.uk/flynn/genus2/local/exp

http://people.maths.ox.ac.uk/flynn/genus2/local/log
http://people.maths.ox.ac.uk/flynn/genus2/local/exp
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# Define the variable n
var(’n’)
s1=n*Log1
s2=n*Log2
Zpn.<n>=PolynomialRing(Zp) # (Z/(13ˆ4 Z))[n]

# From http://people.maths.ox.ac.uk/flynn/genus2/local/
exp

Exp1=
Exp2=

print(Zpn(Exp1)) # Reducing the function Exp1 modulo
13ˆ4

print(Zpn(Exp2)) # Reducing the function Exp2 modulo
13ˆ4

Now, with the goal of computing the polynomial θ for the point A = 2 ·D modulo 134,
we first find (ai). As A is of the form {P, P} where P = (x, y) = (u, v), we multiply
each fraction by 1 represented as the conjugate of its numerator so that Sage simplifes
before performing subsitutions to avoid divison by (x− u).

var(’x y u v’) # Define variables
x0,y0,u0,v0=9/4,135/32,9/4,135/32 # Values of x,y,u,v for

subsitution

# Intermediate functions
f0xu=2*f0+f1*(x+u)+2*f2*(x*u)+f3*(x+u)*(x*u)+2*f4*(x*u)ˆ2+f5*(x+u)*(

x*u)ˆ2+2*f6*(x*u)ˆ3
f1xu=f0*(x+u)+2*f1*(x*u)+f2*(x+u)*(x*u)+2*f3*(x*u)ˆ2+f4*(x+u)*(x*u)

ˆ2+2*f5*(x*u)ˆ3+f6*(x+u)*(x*u)ˆ3
gxu=f0*4+f1*(x+3*u)+f2*(2*x*u+2*uˆ2)+f3*(3*x*uˆ2+uˆ3)+f4*(4*x*uˆ3)+

f5*x*(x*uˆ3+3*uˆ4)+f6*2*x*(x*uˆ4+uˆ5)
gux=f0*4+f1*(u+3*x)+f2*(2*u*x+2*xˆ2)+f3*(3*u*xˆ2+xˆ3)+f4*(4*u*xˆ3)+

f5*u*(u*xˆ3+3*xˆ4)+f6*2*u*(u*xˆ4+xˆ5)
hxu=f0*2*(x+u)+f1*u*(3*x+u)+f2*4*x*uˆ2+f3*x*uˆ2*(x+3*u)+f4*2*x*uˆ3*(

x+u)+f5*x*uˆ4*(3*x+u)+f6*4*xˆ2*uˆ5
hux=f0*2*(u+x)+f1*x*(3*u+x)+f2*4*u*xˆ2+f3*u*xˆ2*(u+3*x)+f4*2*u*xˆ3*(

u+x)+f5*u*xˆ4*(3*u+x)+f6*4*uˆ2*xˆ5
Fx=f0+f1*x+f2*xˆ2+f3*xˆ3+f4*xˆ4+f5*xˆ5+f6*xˆ6 # yˆ2
Fu=f0+f1*u+f2*uˆ2+f3*uˆ3+f4*uˆ4+f5*uˆ5+f6*uˆ6 # vˆ2

# (a_i)
a15=((x-u)ˆ2).full_simplify().subs(x=x0,y=y0,u=u0,v=v0)
a14=1
a13=(x+u).full_simplify().subs(x=x0,y=y0,u=u0,v=v0)
a12=(x*u).full_simplify().subs(x=x0,y=y0,u=u0,v=v0)
a11=(x*u*(x+u)).full_simplify().subs(x=x0,y=y0,u=u0,v=v0)
a10=((x*u)ˆ2).full_simplify().subs(x=x0,y=y0,u=u0,v=v0)
a9=((Fx-Fu)/((x-u)*(y+v))).full_simplify().subs(x=x0,y=y0,u=u0,v=v0)
a8=((uˆ2*Fx-xˆ2*Fu)/((x-u)*(u*y+x*v))).full_simplify().subs(x=x0,y=
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y0,u=u0,v=v0)
a7=((uˆ4*Fx-xˆ4*Fu)/((x-u)*(uˆ2*y+xˆ2*v))).full_simplify().subs(x=x0

,y=y0,u=u0,v=v0)
a6=((uˆ6*Fx-xˆ6*Fu)/((x-u)*(uˆ3*y+xˆ3*v))).full_simplify().subs(x=x0

,y=y0,u=u0,v=v0)
a5=((f0xuˆ2-4*Fx*Fu)/((x-u)ˆ2*(f0xu+2*y*v))).full_simplify().subs(x=

x0,y=y0,u=u0,v=v0)
a4=((f1xuˆ2-(x+u)ˆ2*Fx*Fu)/((x-u)ˆ2*(f1xu+(x+u)*v*y))).full_simplify

().subs(x=x0,y=y0,u=u0,v=v0)
a3=((x*u)*a5).full_simplify().subs(x=x0,y=y0,u=u0,v=v0)
a2=((gxuˆ2*Fx-guxˆ2*Fu)/((x-u)ˆ3*(gxu*y+gux*v))).full_simplify().

subs(x=x0,y=y0,u=u0,v=v0)
a1=((hxuˆ2*Fx-huxˆ2*Fu)/((x-u)ˆ3*(hxu*y+hux*v))).full_simplify().

subs(x=x0,y=y0,u=u0,v=v0)
a0=(a5ˆ2).full_simplify().subs(x=x0,y=y0,u=u0,v=v0)

# ensure gcd(a_i)=1
a=[a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15]
aLcm=lcm([denominator(ai) for ai in a])
a=[ai*aLcm for ai in a]
a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15 = a
print(a)

If A = ∞ then we would have this instead.

a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15 =
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Recall that the Φij depend on the coefficients fi, ai from above, and bi arrising from t1
and t2. We now compute bi. We use the formule from http://people.maths.ox.
ac.uk/flynn/genus2/local/local.coordinates with the name changes
si → bi and s1, s2 → t1, t2.

var(’t1 t2’) # Define variables

# (b_i)
b0=1
b1=t1
b2=t2
# http://people.maths.ox.ac.uk/flynn/genus2/local/local.coordinates
b3=
b4=
b5=
b6=
b7=
b8=
b9=
b10=
b11=
b12=
b13=
b14=
b15=

http://people.maths.ox.ac.uk/flynn/genus2/local/local.coordinates
http://people.maths.ox.ac.uk/flynn/genus2/local/local.coordinates
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We can now use the formulae for Φij (from http://people.maths.ox.ac.uk/
flynn/genus2/jacobian.variety/bilinear.forms) to arrive at θ(n).

# http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/
bilinear.forms}

phi41=
phi42=
phi43=

Finally, we are in a position to compute θ(n).

# Symbolically find theta(n)
theta=(phi42ˆ2-4*phi41*phi43).full_simplify()

# Simplify theta modulo 13ˆ4
Zpt.<t1,t2>=PolynomialRing(Zp)
print(Zpt(theta))

# Substitute our expressions for t_1 and t_2 to get the
final theta(n)

print(Zpt(theta).subs(t1=Zpn(Exp1), t2=Zpn(Exp2)))

If our original power of p (here 134) does not give us a θ(n) that Strassman’s Theorem
works on, we can go back and redefine Zp=Integers(...) to a larger power of
p, provided that considering the formal exponential and logarithm up to degree 7 is
enough. This happens here when we consider A = O where we need to consider 137

instead (Zp=Integers(13ˆ7)).

A.5 Large Torsion

Note that Magma requires hyperelliptic curves to have integer coefficients, so we multi-
ply the right by 4 (which is a birational transformation Y 7→ 2Y ). This prints the size
of the torsion of J(Ct) for −n ≤ t ≤ n where n = 100.

_<x>:=PolynomialRing(Rationals()); //Base field
n:=100; //Max t to try

for t in [-n..n] do
if not(t eq 0) then

A:=(1/2)*((t-2)*xˆ2+(1-2*t)*x+t);
pol:=Aˆ2-t*x*(x-1)ˆ4;
pol:=pol*4; //Make integer coefficients
C:=HyperellipticCurve(pol); //Curve C_t
J:=Jacobian(C); //Jacobian

//Size of Torsion

http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.forms
http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.forms
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printf "%o: %o\n",t,#(TorsionSubgroup(J));

//Order of P_0 and P_1 resp
Order(C![0,Evaluate(A,0)*2]-C![1,0,0]);
Order(C![1,Evaluate(A,1)*2]-C![1,0,0]);
end if;

end for;
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