
The School of Mathematics

Modelling Geophysical Fluids Using
Dedalus

by

Tristan Pang

Dissertation Presented for the Degree of
MSc in Computational Applied Mathematics

August 2023

Supervised by
Dr James R. Maddison

Abstract

Partial differential equations (PDEs) are an essential part of mathematics and can be applied in
a diverse range of places, including geophysical problems. Spectral methods are an alternative
to the traditional finite element and finite difference methods for numerically solving PDEs.
Spectral methods rely on expanding the solution out in terms of basis functions. It is a global
method, as opposed to the finite element and finite difference methods, which rely on local
information on a specified grid. Spectral methods offer the benefit of yielding smooth solutions
but require a regular domain.

Dedalus is a Python package that implements spectral methods in a human-readable manner.
In this dissertation, we start by testing Dedalus on time-independent models. We then build
up towards time-dependent models, and simulate a simple advection problem. We analyse the
errors in each of these examples and draw conclusions about the best method for our main
model.

These pieces are then put together to simulate the Stommel–Munk problem on a circular domain.
This time-dependent PDE is a simplified model of a shallow ocean based on the vorticity equation
and forced by the wind with Stommel’s drag and Munk’s viscosity damping. It captures ocean-
like behaviour, including westward intensification and the formation of eddy currents.

Acknowledgements

I would like to express my deepest appreciation to my supervisor, Dr James Maddison, for his
guidance, support and encouragement throughout this project and the Computational Applied
Mathematics MSc programme. His overall insights in this field have been inspiring and have
helped me smoothly transition to a new area of research.

I am also grateful for the financial support from the University of Edinburgh School of Mathe-
matics Scholarship.

Many thanks to my academic mentors and role models, Prof. Steven Galbraith and Prof. Victor
Flynn, for their invaluable patience and advice. Whenever I am at an academic hurdle, they
always point me in the right direction.

This endeavour would not have been possible without my parents’ unconditional support. Their
belief in me is my greatest source of motivation.

Own Work Declaration

I confirm that this dissertation is my own work except where explicitly indicated in the text.

Contents

1 Introduction 1

1.1 Solving PDEs . 2

1.2 Outline of dissertation . 4

2 Spectral methods 5

2.1 Basis choice . 5

2.1.1 Power series basis . 6

2.1.2 Fourier series basis . 6

2.1.3 Chebyshev basis . 7

2.1.4 Convergence . 7

2.2 Method of weighted residuals . 7

2.2.1 Collocation method . 8

2.2.2 Galerkin method . 8

2.3 Imposing boundary conditions . 8

2.3.1 Basis recombination . 9

2.3.2 Lifting . 9

2.3.3 Tau method . 9

2.4 Computing errors . 10

2.5 Dedalus implementation . 10

3 Poisson equation in Dedalus 11

3.1 Creating the bases . 11

3.2 Solving using basis recombination . 11

3.3 Creating the forcing term . 14

3.4 Implementing the tau method . 14

3.5 Creating the problem . 14

3.6 Solving the problem . 15

3.7 Computing the error . 15

3.8 Results . 15

3.9 Comparison to finite difference . 17

4 Circular domains in Dedalus 18

4.1 Poisson equation on a circle . 18

4.2 Dedalus implementation . 18

4.2.1 Creating the space . 18

4.2.2 Creating the problem . 19

4.2.3 Solving the problem . 19

4.3 Bessel function solution . 19

4.3.1 Dedalus implementation . 20

4.3.2 Results . 21

5 Initial value problems 22

5.1 Forward Euler . 22

5.2 Linear multi-step methods . 22

5.3 Absolute stability . 23

5.4 Systems of PDEs . 24

5.5 Stiffness . 24

5.6 Dealiasing . 25

5.7 Dedalus implementation . 26

I

6 Solid body rotation in Dedalus 28
6.1 Class initialisation . 28
6.2 Creating the problem . 29
6.3 Solving the problem in time . 29
6.4 Solving the advection equation . 30
6.5 Results . 31

6.5.1 Comparison of different timesteps . 32
6.5.2 Experimental comparison of timesteppers 33

7 The Stommel–Munk problem 34
7.1 Coriolis effect . 34
7.2 Vorticity equation . 34
7.3 The model . 35

7.3.1 Stommel model . 35
7.3.2 Munk Model . 35
7.3.3 Stommel–Munk model . 35
7.3.4 Initial conditions . 36
7.3.5 Parameter choices . 36

7.4 Expected behaviour . 38
7.5 Dedalus implementation . 38

7.5.1 Creating the problem . 38
7.6 Results . 40

7.6.1 Performance . 41
7.6.2 Varying wind forcing . 41
7.6.3 Varying viscosity . 41

8 Conclusion 44
8.1 Future work . 44

8.1.1 GPU . 44
8.1.2 Conformal mappings . 44
8.1.3 Multilayer models . 45

8.2 Final remarks . 45

References 48

Appendices 49

A Extra figures 49

B Nomenclature 54
B.1 Variable naming conventions . 54
B.2 Operators and functions . 54
B.3 Parameters . 54

B.3.1 Constant parameters . 54
B.3.2 Tweaked parameters . 54
B.3.3 Simulation parameters . 55

C Code 56
C.1 Using Dedalus on Windows . 56
C.2 Packages used . 56
C.3 Helper functions . 57
C.4 Poisson on a square . 58
C.5 Basic polar solver . 59
C.6 Poisson on a circle . 62

C.6.1 Bessel solution . 63

II

C.7 Time-dependent polar solver . 64
C.7.1 Writing to drive . 66
C.7.2 Reading from drive . 66

C.8 Solid body rotation . 67
C.8.1 Computing errors . 67

C.9 Stommel–Munk problem . 68
C.9.1 Evolution of vorticity Laplacian . 70

C.10 Dealiasing . 70

III

List of Figures

1 NASA’s visualisation of the Gulf Stream . 1
2 FEM piecewise linear interpolation and spectral Chebyshev bases 3
3 Approximations of sin(πx) with piecewise linear interpolation and Chebyshev . . 3
4 Power, Fourier and Chebyshev basis functions . 6
5 Domain of convergence of various bases . 7
6 Poisson equation on a square . 15
7 Square Poisson equation errors vs number of basis functions 16
8 Coefficients of sin(πy) in the Chebyshev basis . 16
9 Theoretical truncation errors of the 5-point Laplacian 17
10 Bessel solution to the Poisson equation . 21
11 Bessel errors vs varying basis sizes . 21
12 Stability regions for common time schemes . 24
13 Examples of dealiasing effects . 25
14 Snapshots of the solution to solid body rotation 31
15 Grid points of the disc basis with 256 radial and azimuthal functions 31
16 Norm of errors of the solution to solid body rotation 32
17 Errors of the solution to solid body rotation with different timesteps 32
18 Errors of the solution to solid body rotation with different timesteppers 33
19 Plots of wind forcing and solution to Stommel problem 37
20 Early behaviour of Stommel–Munk . 40
21 Contribution of the Munk viscosity over time . 40
22 Formation of eddies in Stommel–Munk . 41
23 High resolution of ocean-like behaviour of Stommel–Munk 42
24 Effects of wind forcing strength . 42
25 Vorticity with very strong wind forcing . 43
26 Varying viscosity of the Stommel–Munk problem 43
27 Unresolved detail for a small viscosity . 43
28 Elliptical grid mapping . 44
29 Stream function of Stommel–Munk model . 49
30 Vorticity of Stommel–Munk model . 50
31 Vorticity of Stommel–Munk model in years 2 and 3 51
32 Vorticity of symmetric Stommel–Munk model . 52
33 High resolution plot of vorticity showing eddies of Stommel–Munk 53
34 High resolution collapse of jets in Stommel–Munk 53

IV

1 Introduction

There is widespread consensus that climate change has a global impact [16] and has been at-
tributed to human behaviour [7]. June 2023 has been the hottest since temperature records
started [11]. This heat has caused wildfires [34] and heat exhaustion [11]. Understanding cli-
mate patterns is a crucial step to alleviating the effects of climate change.

The flow of water in our oceans is one such area of study. For example, a recent study suggests
that the Atlantic meridional overturning circulation (AMOC), a large-scale flow of water in the
Atlantic Ocean, could collapse in the future due to an influx of freshwater from melting icecaps
due to greenhouse gas emissions [10]. They reach this conclusion by fitting real-world data to
their stochastic model. Crossing such a tipping point would have significant implications for
Earth and could lead to extreme weather events [16].

Another important part of the Atlantic Ocean is the Gulf Stream, a flow of warm water from
North America to Europe, contributing to warmth in Western Europe [35]. Modelling ocean
flows such as the Gulf Stream allows us to understand the formation of such flows and their
effects. In 2011, NASA published an animation of the world’s ocean currents [29], which includes
the image in Figure 1. This image shows westward intensification, where intense current forms
on the western boundary of a body of water. The standard model for this is Stommel’s wind-
driven ocean model [30], which describes this behaviour. Munk proposed a modification of
the Stommel model, in which friction, described using the Laplacian of the stream function, is
replaced by the viscosity, the Laplacian of the vorticity [23].

Combining these two models yields the Stommel–Munk model [31]. This model is described by
the time-dependent partial differential equation (PDE) in Equation 28 on a circular domain with
free slip boundary conditions. We assume a sufficiently shallow ocean to use a two-dimensional
model. By forcing the vorticity equation with a sinusoidal wind and implementing the Stommel
drag and Munk viscosity damping, we observe the formation of eddy currents by examining the
vorticity over time.

This dissertation aims to numerically implement the Stommel–Munk model PDE in Dedalus, a
Python package for spectral methods.

Figure 1: NASA’s visualisation of the Gulf Stream using a mix of real ocean data and numerical
models. The image was created by NASA’s Scientific Visualization Studio [29].

1

1.1 Solving PDEs

Consider the 2-dimensional Poisson equation with forcing f(x, y) on a square domain, a proto-
typical elliptic PDE [19]. Let the domain be Ω = {(x, y) : 0 ≤ x, y ≤ 1} and impose Dirichlet
boundary conditions: {

∇2ψ = f(x, y) in Ω,

ψ = 0 on ∂Ω.
(1)

An elementary method for numerically solving the Laplace Equation demonstrated in [19] uses
a finite difference method via a 5-point stencil for the Laplacian. The problem is discretised
in space with grid spacing h (in both coordinate directions) by replacing the derivatives with
centred finite differences, namely

∇2ψ(xi, yj) ≈
1

h2
(ψi−1,j − 2ψij + ψi+1,j) +

1

h2
(ψi,j−1 − 2ψij + ψi,j+1), (2)

where xi = ih, yj = jh and ψi,j = ψ(xi, yj). These approximations can be gathered to form a
sparse matrix system of dimension m2 ×m2 with m2 = 1

h2 (where h is nicely chosen so that m
is an integer):

Lψ = f , ψ =

ψ
1

...
ψm

 ,ψi =

ψ1i
...

ψmi

 , f =

 f1

...
fm

 , f i =

 f(x1, yi)
...

f(xm, yi)

 ,

L =
1

h2


T I
I T I

. . .
. . .

. . .

I T

 , T =


−4 1
1 −4 1

. . .
. . .

. . .

1 −4

 ,

(3)

so that L is a tridiagonal block matrix (I is the m × m identity matrix) and T is an m × m
tridiagonal matrix.

This method can become cumbersome to create and manipulate for small grid spacing (h→ 0)
as the dimension m2 scales inversely with h2. Although this scheme is second-order accurate,
the condition number of the matrix L is O

(
1
h2

)
and so L is very ill-conditioned as h → 0 [19].

Thus a small perturbation can lead to drastic errors [9].

Computational framework solves the tedious issue of manually creating these large systems –
human-readable code reflecting the PDE in Equation 1 can be interpreted by a computer, which
generates the relevant matrix systems required to solve the PDE. Examples of such frameworks
include Devito [18], which employs finite difference methods; FEniCS [28] and Firedrake [26],
which employ finite element methods; and Dedalus [5], which employs spectral methods. These
different methods for solving PDEs aim to improve on finite differencing.

The finite element method (FEM) is a natural extension of finite difference [17]. Finite differ-
ence discretises derivatives using Taylor-like expansions as in Equation 2, whereas FEM creates
piecewise functions on a mesh [17]. The PDE can be discretised using these piecewise functions,
and a matrix system can be formed using the Galerkin method [22] (Section 2.2.2).

On the other hand, spectral methods rely on a set of basis functions (similar to the piecewise
functions of FEM) and aim to solve PDEs by finding coefficients that express the solution in
terms of these basis functions [5]. The solution of a PDE can be written as

ψ(x) =
∞∑
n=0

a0φn(x),

where φn are the chosen basis functions. For example, if φn(x) = xn, the sum is a Taylor
expansion of ψ.

2

Figure 2: First five piecewise linear interpolation polynomials on the grid points
{−1,−0.5, 0, 0.5, 1} for FEM and first five Chebyshev polynomials for the spectral method.

Figure 3: Approximations of sin(πx) on the interval [−1, 1] when written in terms of the first five
piecewise linear interpolation basis functions for FEM and first five Chebyshev basis functions
for the spectral method. In Section 3.8, we see that 20 Chebyshev polynomials is sufficient to
approximate sin(πx) with machine precision errors.

Boyd [4] explains the difference between these methods: FEM makes a grid on the problem
domain, then chooses local basis functions to approximate the solution; whereas spectral methods
do not need a grid, and use global basis functions. The advantages of FEM are that they create
a sparse matrix problem and have easily customisable domain shapes. These come at the cost of
a lower accuracy. Spectral methods have better accuracy at the cost of requiring a very smooth
and regular domain [4].

For example, a typical set of basis functions for FEM over the grid points {x0, . . . , xm} of the
interval [x0, xm] = [−1, 1] are the piecewise linear interpolation Lagrange polynomials [17], given
by

Ln(x) =
∏

i ̸=n, 0≤i≤m

x− xi
xn − xi

.

Typical basis functions over [−1, 1] for the spectral method are the Chebyshev polynomials [5]
given by (Section 2.1.3)

Tn(x) = cos(n arccos(x)).

These two sets of basis functions are plotted in Figure 2. Expressing a function in a basis
typically involves integration via the least squares method (Equation 4). Since the FEM basis
functions have compact support, the integration is local, whereas the spectral basis requires
global integration. This makes integration for FEM quicker and results in a sparse mass matrix
(Equation 12), whereas the spectral method gives dense mass matrices. A disadvantage of the
FEM basis is that functions in the function space are usually not smooth. In contrast, spectral
methods yield infinitely differentiable functions, as seen in Figure 3. This impacts accuracy [4]
and can make spectral methods a favourable choice.

In this dissertation, we solve PDEs with spectral methods using Dedalus in Python [5]. The
main result will be solving the Stommel–Munk problem, a time-dependent PDE, on a disc.

3

1.2 Outline of dissertation

This dissertation is split into sections that build up towards implementing the Stommel–Munk
problem in Dedalus. In Section 2, we introduce the core concepts of spectral methods by
following [4], including discussions on basis choices and imposing boundary conditions. We then
consider a simple example in Section 3, where we solve a Poisson equation on a square domain
by hand to demonstrate a spectral method, as well as a thorough discussion on the Dedalus
implementation of this problem.

To overcome the limitations of Dedalus, we implement a circular domain using polar coordinates
in Section 4. We also discuss the accuracy of Dedalus.

In Section 5, we introduce a time dependence, and discuss methods for timestepping in initial
value problems (IVPs) by following [19]. This theory is used in Section 6, where we solve an
advection equation on a disc using Dedalus. We create a time-dependent PDE solver class that
can be used to create subclasses to solve various different IVPs. The full code is presented in
Appendix C.

In section 7, we derive the Stommel–Munk problem following [31]. This is then solved in Dedalus
using the IVP class defined in Section 6.

Throughout this dissertation, we assume that all domains are sufficiently nice (e.g. open,
bounded and connected), and that functions are sufficiently smooth. A summary of notation
used can be found in Appendix B.

4

2 Spectral methods

In this section, we present a brief overview on spectral methods based on Chapters 1-4, 6 and 21
of Boyd’s book [4] and supplemented by [5] and [20, Kang, Suh. Spectral Methods].

Let Ω be an open, bounded, connected and sufficiently regular domain in a Hilbert space. Define
a suitable inner product between two functions u, v over a domain Ω by

⟨u, v⟩ =
∫
Ω
ρ(x)u(x)v(x) dx,

where · is complex conjugation and ρ is a given weight function that is positive everywhere and
satisfies [15, Süli. Numerical Solution of PDEs]∫

Ω
ρ(x)|x|i dx <∞, i ∈ Z≥0.

The inner product ⟨·, ·⟩ induces the weighted L2-norm

∥u∥2 = ⟨u, u⟩ =
∫
Ω
ρ(x)|u(x)|2 dx.

Let B = {φn(x)}n∈N be a complete orthogonal basis of the function space of Ω satisfying given
boundary conditions. Without loss of generality, it is possible to scale this basis to be normal.
Orthonormality ensures that for the given inner product,

⟨φn, φm⟩ = δ(m− n) =

{
1 if n = m,

0 if n ̸= m,

where δ is the Kronecker delta function (δ(0) = 1 and is 0 everywhere else).

The goal of spectral methods is to approximate a function f using the orthogonal basis B by
computing coefficients fφn := ⟨φn, f⟩ so that the N -th order approximation of f with respect to
B given by [5]

fN (x) :=
N∑

n=0

fφnφn(x) (4)

converges to f , i.e. limN→∞ fN (x) = f(x) (where convergence is taken in an appropriate norm).

Let Lu(x) = f(x) be a differential equation with operator L on the domain Ω (e.g. for Poisson
in Equation 1, L = ∇2 and u = ψ). To measure the residual of the coefficient choices uφi , define
the residual function as [4]

R(x, uφ1 , . . . , u
φ
N) := LuN (x)− f(x).

Since this residual is 0 precisely when LuN (x) = f(x), we aim to minimise this magnitude
of the residual when varying the coefficients of u. Different spectral methods choose different
minimisation strategies [4].

Although not necessary, spectral methods work best when the true solution is smooth [4]. In the
next sections, we outline which basis to choose, how to ensure boundary conditions are satisfied
and how to find the optimal coefficients of u.

2.1 Basis choice

There are many possible choices for the basis B to optimise the rate of convergence of fN . The
simplest choice is the power series basis {xn : n ∈ Z≥0}, but this is not orthogonal and does
not have good numerical conditioning [4]. Another is a Fourier series basis {exp(inx) : n ∈ Z}.
The Chebyshev polynomial basis {cos(n arccos(x)) : n ∈ Z≥0} is the gold standard of spectral

5

Figure 4: First few basis functions for the power, Fourier and Chebyshev bases.

methods and is almost always the best choice [4]. The standard Fourier basis is useful for
periodic boundary conditions [5]. Figure 4 shows the first few functions for each of these bases.

2.1.1 Power series basis

A smooth function f can be written as a power series

f(x) =
∞∑
n=0

anx
n.

The coefficients may be found in the usual way by performing a Taylor expansion. Alternatively,
given an inner product, we may solve a mass matrix system as in Equation 12.

2.1.2 Fourier series basis

The 2π-periodic Fourier series basis functions are trigonometric polynomials of the form exp(inx)
for n ∈ Z [4]. Then any function f can be written as

f(x) =
∞∑

n=−∞
cn exp(inx), cn =

1

2π

∫ π

−π
f(x) exp(−inx) dx.

This basis is clearly orthogonal in the L2 inner product with as 1
2π

∫ π
−π exp(inx − imx) = 0 if

n ̸= m, and 1 if n = m.

By using the identities

cos(x) =
1

2
(exp(ix) + exp(−ix)) , and sin(x) =

1

2i
(exp(ix)− exp(−ix)) ,

the Fourier series of a function f can also be written explicitly with sines and cosines [4] as

f(x) = a0 +

∞∑
n=1

an cos(nx) +

∞∑
n=1

bn sin(nx), (5)

where the coefficients are given by

a0 =
1

2π

∫ π

−π
f(x) dx,

an =
1

π

∫ π

−π
f(x) cos(nx) dx,

bn =
1

π

∫ π

−π
f(x) sin(nx) dx.

6

Figure 5: Domain of convergence of various bases on the complex plane. Figure adapted from
[4, Fig 2.12].

2.1.3 Chebyshev basis

The Chebyshev basis are trigonometric polynomials Tn(x) = cos(n arccos(x)) for n ∈ Z≥0 on the
interval [−1, 1], which geometrically is the projection of cos(nx) from the cylinder to the plane [5].
The basis is orthogonal with respect to the weighted L2 inner product with ρ(x) = 1√

1−x2
[4].

The Chebyshev series expansion of a function f is

f(x) =
∞∑
n=0

fφn Tn(x), fφn =

∫ 1

−1

fφn (x)Tn(x)√
1− x2

dx.

Explicitly, the first few Chebyshev polynomials are

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1.

2.1.4 Convergence

The domain of convergence of an infinite sum f(x) =
∑
fφnφn(x) are the values of x (in the

complex plane) such that the sum is finite. A theorem from Boyd [4, Theorem 2, Section 2.7]
states the following typical convergence domains with a suitable inner product.

� Power series converges in a disc.

� Fourier series converges in an infinite strip symmetric about the real-axis.

� The Chebyshev polynomials converge in an ellipse with foci on the real axis at ±1.

From Figure 5, we can clearly see that the domain of convergence of the power series basis is
typically the smallest, and thus is not a good choice. Fourier should be chosen for problems with
periodic boundary conditions, and Chebyshev for any other case [4]. Aside from having good
convergence, the orthogonality of the Chebyshev and Fourier bases also simplifies calculations
as seen in Section 3.2.

2.2 Method of weighted residuals

Now that we can choose a basis B = {φi}, we can solve a PDE with no boundary conditions
by choosing the coefficients uφi so that the residual is minimised. This can be done using the

7

method of weighted residuals [20, Kang, Suh. Spectral Methods]. For all i ∈ {0, 1, . . . , N},
define test functions wi such that

⟨wi, R(x, u
φ
1 , . . . , u

φ
N)⟩ = 0. (6)

There are different choices we can make for the test functions, the main traditional methods
being collocation and Galerkin.

2.2.1 Collocation method

The collocation method (also known as pseudospectral [4]) uses the Kronecker delta wi(x) :=
δ(x−xi), where the xi are chosen and are called the collocation points. Substituting the weights
into Equation 6 gives the constraints

LuφN (xi) = f(xi).

Thus this method minimises the residuals by minimising at the collocation points. The collo-
cation method is effective in many situations and so is the most common polynomial spectral
method [5].

Whilst these conditions are easy to enforce, the dense matrices produced are complicated to
work with [5].

2.2.2 Galerkin method

The Galerkin method uses the basis functions as the test functions wi(x) := φi(x). Substituting
into Equation 6,

⟨φi, LuN − f⟩ = ⟨φi, LuN ⟩ − ⟨φi, f⟩ = 0. (7)

Fix an N + 1 as the number of basis functions to use computationally and suppose that the
operator L is linear. Then Equation 7 becomes

⟨φi, LuN ⟩ =
N∑

n=0

uφn⟨φi, Lφn⟩ = ⟨φi, f⟩.

The Galerkin method reduces to an (N + 1)× (N + 1) matrix problem [4]:

Lu = f , Lij = ⟨φi, Lφj⟩, ui = uφi , fi = ⟨φi, f⟩, i = 0, . . . , N.

The problem then can be solved by evaluating the entries of L and f by computing the inner
products, then solving the matrix system via usual methods (e.g. LU factorisation if N is small).
The solution can then be found as uN =

∑N
n=0 u

φ
nφn.

The hardest part of the Galerkin method is the integration when computing the inner products,
and the accuracy is slightly worse than collocation [4].

2.3 Imposing boundary conditions

Suppose we now have a PDE with the Dirichlet boundary condition ∂Ω = 0. There are two ways
to ensure that the solution of this PDE satisfies these boundary conditions [4]. Either impose
additional constraints

∞∑
n=0

uφnφn(∂Ω) = 0,

or choose the basis functions φn carefully so that they satisfy the boundary conditions. The
first is the tau method, and the latter is basis recombination [4].

8

2.3.1 Basis recombination

An example of basis recombination is modifying the Chebyshev basis {Tn} in Section 2.1.3 to
get a new non-orthogonal basis {φn} satisfying φn(−1) = φn(1) = 0 where [4]

φ2n = T2n − T0, φ2n+1 = T2n+1 − T1, n ≥ 1.

See Section 3.2 for a worked example. The disadvantage of basis recombination is that, in
general, a suitable new basis φn is hard to find, especially when the boundary conditions are
complicated, and in general will not be orthogonal. Non-orthogonal bases lead to dense mass
matrices (Equation 12).

2.3.2 Lifting

Suppose the boundary conditions of a PDE Lu(x) = f(x) were not homogeneous (that is, not
zero everywhere on ∂Ω). Then let û be any smooth function satisfying the boundary conditions.
Define a new problem in v using the substitution u = v + û to get the PDE

Lv(x) = f(x)− Lû(x)

with homogeneous boundary conditions (i.e. ∂Ω = 0). We can then use basis recombination to
get an appropriate basis.

2.3.3 Tau method

The tau method is an alternative to basis recombination [4], and is the method used by
Dedalus [5]. The tau method uses the test functions wi = Ti where Ti are the Chebyshev
polynomials from Section 2.1.3. So, the tau method is a modified Galerkin method and coin-
cides when the chosen spectral basis B is Chebyshev [4].

The idea of the tau method is to solve a slightly perturbed differential equation

Lv(x) + τε(x) = f(x),

where ε(x) is a specified perturbation [5]. A usual choice is ε = TN , the highest degree basis
function used in the approximation. The hope is that if this perturbation is small, then the
perturbed solution v is a good approximation to the true solution u.

Consider the differential equation

ux − u = 0, u(0) = 1, 0 ≤ x ≤ 1.

Following [4, Chapter 21], the residual function is a polynomial of degree N (with N + 1 coeffi-
cients), but the extra boundary conditions imposes one extra constraint, so that there are N +2
equations with only N + 1 variables (coefficients of uN). Thus, we perturb the system to get

vx + v = τTN (x), v(−1) = 1.

The Galerkin method in Section 2.2.2, determines the first N rows of an (N + 1) × (N + 1)
system. The final row arises from the tau factor. When solved, this system determines the
coefficients of v independent of τ . When using one tau term (i.e. one boundary condition), the
matrix equation can be solved in O(N2) time by using canonical polynomials (much less than
O(N3) of normal matrix inversion) [25][4]. The matrix arrising from the tau method is dense,
but the method can be modified to produce sparse matrices [5].

Adding more boundary conditions involves more tau factors. For each boundary condition, one
extra row is added to the Galerkin matrix system.

9

2.4 Computing errors

Now that we know how to solve a PDE using spectral methods, we can evaluate its effectiveness.
Suppose a problem over a domain Ω has solution u(x). Let û(x) be an approximation of this
solution (as a result of a spectral method or otherwise). We can evaluate the effectiveness of
this approximation by computing the error

R(x) = U(x)− u(x).

The magnitude of error can be computed using any appropriate function norm [19], for example,
the L2-norm

∥R∥2 =
(∫

Ω
|R(x)|2 dx

) 1
2

=

(∫
Ω
|U(x)− u(x)|2 dx

) 1
2

. (8)

2.5 Dedalus implementation

Given a discretised linear boundary value problem (LBVP) arising from Section 2.3.3 with an
appropriate amount of tau factors (an example is given in Section 3.5), Dedalus solves the LBVP
as follows [5]:

1. The LBVP is written in the form Lx = F , where L is a matrix of operators on the variables
x and Lx is strictly linear. Each row of the matrix formula is an equation (either part
of the defining PDEs or a boundary condition). The number of (linearly independent)
equations must be the same as the number of problem variables.

2. Dedalus breaks the problem down into smaller problems called pencils Lpxp = Fp (see the
example in Section 3.2).

3. For each pencil matrix equation, Dedalus converts the dense matrix Lp into a sparse and
banded matrix L̃p = PL

p LpP
R corresponding to the equivalent matrix problem L̃px̃p = F̃p,

where x̃p =
(
PR
)−1

xp and F̃p = PL
P Fp. This is done by applying the matrices PL

p and

PR called the left and right preconditioning matrices respectively [5].

4. This sparse system can be efficiently solved for x̃p.

5. Applying the right preconditioning matrix to x̃p =
(
PR
)−1

xp yields xp.

6. The solution x can be retrieved by evaluating the pencil.

More details and specific examples are in subsequent sections.

10

3 Poisson equation in Dedalus

In this section, we outline how spectral methods and Dedalus works with an explicit example. We
build and solve the following simple Poisson equation as a toy example. Let Ω = {(x, y) : −1 ≤
x, y ≤ 1} be a square and define the problem

∇2ψ(x, y) = −2π2 sin(πx) sin(πy) in Ω,

ψ periodic along the x-axis,

ψ(x,−1) = ψ(x, 1) = 0 along the y-axis,

(9)

so that the boundary conditions are Dirichlet at the horizontal boundaries and periodic at the
vertical boundaries. The exact solution is

ψ(x, y) = sin(πx) sin(πy).

We will approximate a solution by hand using spectral methods following Section 2 with basis
recombination, and mention why the tau method may be more favourable. Dedalus code snippets
using the tau method will then be provided. We will check the relationship between the error
and the number of basis functions, then compare the spectral method with the 5-point stencil
finite differencing method mentioned in Section 1.1.

The code in this section is adapted from the poisson.py example in the Dedalus documentation
[6]. To use Dedalus onWindows, see Appendix C.1. The necessary packages are in Appendix C.2.

3.1 Creating the bases

Since the x-coordinates are periodic, we use the Fourier basis along the x-axis. For the y-axis, we
use the Chebyshev basis. Explicitly, the x basis functions written in their real form in Equation 5
(normalised and rescaled to have a period of 2) are

ξ0(x) =
1√
2
, ξn(x) = sin(nπx), ξ−n(x) = cos(nπx), n ∈ Z>0.

And the y basis functions are the Chebyshev polynomials from Section 2.1.3,

T0(y) = 1, T1(y) = y, T2(y) = 2y2 − 1, T3(y) = 4y3 − 3y,

Note that the x basis is orthonormal with respect to the unweighted L2 inner product, and the
y basis is orthogonal with respect to the weighted L2 inner product with ρ(y) = 1√

1−y2
.

Numerically, we use 256 basis functions in each direction.

1 Nx, Ny = 256, 256

We now define our coordinate system, and the x and y bases each on the interval [−1, 1]. All
data is stored in double precision (np.float64).

1 coords = d3.CartesianCoordinates('x', 'y')
2 dist = d3.Distributor(coords, dtype=np.float64)
3 xbasis = d3.RealFourier(coords['x'], size=Nx, bounds=(-1, 1))
4 ybasis = d3.Chebyshev(coords['y'], size=Ny, bounds=(-1, 1))

Next, create a field for ψ, the function we are solving for.

1 psi = dist.Field(name='psi', bases=(xbasis, ybasis))

3.2 Solving using basis recombination

We now demonstrate how to use spectral methods with basis recombination by hand. To con-
struct a suitable basis for the y basis, note that for all n ∈ Z≥0, T2n(±1) = 1 and T2n+1(±1) = ±1

11

[4]. Thus let the new y basis functions be

φ2n+1 = T2n+1 − T1, φ2n = T2n − T0, n ∈ Z≥1.

Note that this basis for functions satisfying f(1) = f(−1) = 0 is neither orthogonal with the

standard unweighted L2 inner product nor the weighted inner product with ρ(y) = (1− y2)−
1
2 .

For simplicity, we use the unweighted L2 inner product throughout this section. Note that if
the boundary conditions were nonzero, we would have to use lifting from Section 2.3.2 to force
zero boundary conditions.

Here, we use three basis functions in each direction for our calculations. Explicitly,

ξ0(x) =
1√
2
, (10a)

ξ1(x) = sin(πx), (10b)

ξ−1(x) = cos(πx), (10c)

φ2(y) = 2y2 − 2, (10d)

φ3(y) = 4y3 − 4y, (10e)

φ4(y) = 8y4 − 8y2. (10f)

Now, to expand the forcing term f(x, y) = −2π2 sin(πx) sin(πy) of Equation 9 in terms of our
basis functions, we need the coefficients of ξiφj for every combination of i, j. For simplicity, we
fully decouple the two bases so that we can multiply the coefficients of sin(πx) and sin(πy) in
the two bases. This is valid since we can separate

⟨f, ξiφj⟩ = −2π2
∫
Ω
sin(πx) sin(πy)ξi(x)φj(y) = −2π2

∫ 1

−1
sin(πx)ξi(x) dx

∫ 1

−1
sin(πy)φj(y) dy.

Clearly, the x component of f is
sin(πx) = ξ1(x). (11)

Since {φi} are not orthogonal, we cannot simply determine the coefficients of Equation 4 using
⟨φn, g⟩, where g(y) = sin(πy). Instead, we require a solution to the matrix equation (using the
three basis functions of Equation 10),

Ma = b, M =

⟨φ2, φ2⟩ ⟨φ2, φ3⟩ ⟨φ2, φ4⟩
⟨φ3, φ2⟩ ⟨φ3, φ3⟩ ⟨φ3, φ4⟩
⟨φ4, φ2⟩ ⟨φ4, φ3⟩ ⟨φ4, φ4⟩

 , a =

gφ2gφ3
gφ4

 , b =

⟨φ2, g⟩
⟨φ3, g⟩
⟨φ4, g⟩

 . (12)

The matrix M with entries Mij = ⟨φi, φj⟩ is called the mass matrix [4]. Note that if the basis
is orthonormal, then the mass matrix M is the identity, and if the basis is orthogonal, then M
is diagonal. Thus it is desirable to have an orthogonal/orthonormal basis.

Working out the inner products, Equation 12 becomes 64
15 0 256

105
0 256

105 0
256
105 0 1024

315

gφ2gφ3
gφ4

 =

 0
− 48

π3

0

 .

We can either solve the matrix system directly (by inverting the mass matrix, Gaussian elimi-
nation or otherwise); or we could orthogonalise M using Gram-Schmidt [21] or by performing
a Cholesky decomposition [4]. As the dimension of M is small here, we choose the solve the
matrix system directly (although, in practice M is dense and so orthogonalising can be more

12

useful and faster [4]). Thus the vector of coefficients a is

a =

gφ2gφ3
gφ4

 =

 0
− 315

16π3

0

 .

Note that the even coefficients are always zero as g is an odd function. So,

g(y) = sin(πy) ≈ − 315

16π3
φ3(y).

Thus f expressed in terms of the six basis functions in Equation 10 is

f(x, y) ≈ 315

8π
ξ1(x)φ3(y).

It remains to solve the problem using the Galerkin method from Section 2.2.2. Every combi-
nation ξiφj of Equation 10 gives a total of 9 coupled basis functions. Thus we have the 9 × 9
matrix equation Lu = f , where L is a matrix with entries ⟨ξiφj ,∇2ξkφm⟩ (with the unweighted
L2 inner product), u is a vector of coefficients to be found, and f are the coefficients of the
forcing term f written in terms of the 9 basis functions. We use the lexicographical ordering
ξ0φ2, ξ0φ3, ξ0φ4, ξ1φ2, . . . , ξ−1φ4. The second derivatives of the basis functions are

ξ′′0 (x) = 0,

ξ′′1 (x) = −π2 sin(πx) = −π2ξ1,
ξ′′−1(x) = −π2 cos(πx) = −π2ξ−1,

φ′′
2(y) = 4,

φ′′
3(y) = 24y,

φ′′
4(y) = 96y2 − 16.

Since the basis {ξi} is orthogonal, many of the inner products of the matrix L will be zero. Note
that for ξ±1,

⟨ξ±1φj ,∇2ξ±1φm⟩ =
∫
Ω
ξ2±1φj

(
−π2φm + φ′′

m

)
=

∫ 1

−1
φj

(
−π2φm + φ′′

m

)
dy.

Evaluating the inner products gives

L =

A 0 0
0 B 0
0 0 B

 ,

A =

−32
3 0 −128

15
0 −128

5 0
−128

15 0 −5632
105

 , B =

−32
15(5 + 2π2) 0 −128

105(7 + 2π2)
0 −128

105(21 + 2π2) 0
−128

105(7 + 2π2) 0 −512
315(33 + 2π2)

 .

This is a block diagonal matrix composed of three blocks (arising from the orthogonality of the
x basis functions and their nice second derivatives). Note that the diagonal A,B,B are the
pencils of L, and we can solve each of these three pencil matrix equations independently. Since
the vector f corresponding to the forcing term f only has a nonzero entry for ξ1φ3, only the
second block of L corresponding to ξ1 gives nonzero coefficients for u, i.e. we solve

B

u12u13
u14

 =

 0
315
8π
0

 .

Upon solving this system, we find that u12 = u14 = 0 and u13 = − 33075
1024π(21+2π2)

, which yields

13

the solution

u(x, y) = − 33075

1024π(21 + 2π2)
ξ1(x)φ3(y).

This has an error of around 0.3739. Increasing the number of basis functions decreases the error,
as in Section 3.8.

In general, given a non-orthogonal basis, to find a basis representation for a function requires
solving a system with the mass matrix by inversion or otherwise. The mass matrix is typically
dense, and so this can be computationally costly. Instead, Dedalus chooses to work with or-
thogonal matrices (so that the mass matrix is diagonal) and uses the tau method to enforce
boundary conditions. This increases the size of the Galerkin method matrix slightly as per
Section 2.3.3 [5].

3.3 Creating the forcing term

To implement the forcing term f(x, y) = −2π2 sin(πx) sin(πy) in Dedalus, we first define and
retrieve values at collocation points stored as x, y from dist.local_grids. These are used
to define f , which Dedalus numerically converts to coefficients of ξiTj in a similar style to
Section 3.2, except instead of using a dense mass matrix, it is diagonal as a consequence of the
orthogonal basis.

1 x, y = dist.local_grids(xbasis, ybasis)
2 f = dist.Field(bases=(xbasis, ybasis))
3 f['g'] = -2 * np.pi**2 * np.sin(np.pi*x) * np.sin(np.pi*y)

3.4 Implementing the tau method

Since there are two boundary conditions for the x-basis, we require two tau factors as in Sec-
tion 2.3.3.

1 tau_0 = dist.Field(name='tau_0', bases=xbasis)
2 tau_1 = dist.Field(name='tau_1', bases=xbasis)

A lift function is defined to “lift” the tau factor to the derivative basis τjUi(y) (where i = −1,−2
can be used to select the last two derivative basis functions in the y direction) [6], where Ui is
a Chebyshev polynomial of the second kind [4]

T ′
n(y) = nUn−1(y).

Dedalus uses Un−1 instead of Tn to improve on the usual dense tau matrix (Section 2.3.3) by
making it sparse [5].

1 def lift(tau, i):
2 lift_basis = ybasis.derivative_basis()
3 return d3.Lift(tau, lift_basis, i)

3.5 Creating the problem

We can now define the LBVP in Dedalus. Let ψ̂ and f̂ be the discretised forms of ψ and f̂ (i.e.
expanded in the spectral basis as in Section 2.2.2), so the problem is now

∇2ψ̂(x, y) + τ0T−1(y) + τ1T−2(y) = f̂(x, y).

This will be solved by forming the matrix in Section 2.3.3, which looks similar to the Galerkin
matrix in Section 3.2, except with two extra rows and columns for the two tau factors.1

1Using locals() to import local variables into a class in Python is usually discouraged, but is the suggested
method in Dedalus [6].

14

Figure 6: A plot of a solution to the Poisson equation on a square as computed by Dedalus,
alongside the true solution and the error.

1 problem = d3.LBVP([psi, tau_0, tau_1], namespace=locals())
2 problem.add_equation("lap(psi) + lift(tau_0, -1) + lift(tau_1,-2)

= f")
3 problem.add_equation("psi(y=0) = 0")
4 problem.add_equation("psi(y=1) = 0")

3.6 Solving the problem

We now pass the problem into Dedalus’ solver which solves the linear system as in Section 2.5.

1 solver = problem.build_solver()
2 solver.solve()
3
4 x = xbasis.global_grid()
5 y = ybasis.global_grid()
6 psi_g = psi.allgather_data('g')

3.7 Computing the error

We create a Dedalus field for the actual function. As in Section 3.3, this field is defined on a
grid, which Dedalus expresses in terms of the basis functions.

1 xx, yy = np.meshgrid(x, y)
2 actual = np.sin(np.pi * xx) * np.sin(np.pi * yy)
3 actual_field = dist.Field(bases=(xbasis, ybasis))
4 actual_field['g'] = actual.T

The error field is the difference between the computed and actual fields.

1 R = psi - actual_field

3.8 Results

We now plot the results using the a plotting functions defined in Appendix C.3.

1 fig, axs = plt.subplots(1, 3, figsize=(20, 6))
2 im_plot(xx, yy, psi_g.T, ax=axs[0], title='Dedalus')
3 im_plot(xx, yy, actual, ax=axs[1], title='Actual')
4 im_plot(xx, yy, R.evaluate()['g'].T, ax=axs[2], title='Error')
5 plt.show()

Dedalus gives the results in Figure 6. The errors are very close to machine precision. To compute
the L2-norm of this error as in Equation 8, we may use Dedalus’ built in integration d3.integ.

1 np.sqrt(d3.integ(R**2)).evaluate()['g']

This gives ∥R∥2 = 4.93×10−16, which has the same order as machine precision εm = 2.22×10−16.

15

Figure 7: A plot of errors to the Poisson equation on a square when varying the number of
basis functions Ny between 4 and 38. The first plot has Nx = Ny, and the second holds Nx = 4
constant.

Figure 8: Plot of the normed spectral coefficients of sin(πy) in the Chebyshev basis.

1 np.finfo(np.float64).eps

By rerunning the code with varying values for the number of basis functions Nx = Ny, we
see that around 20 basis functions for this problem is actually sufficient to achieve machine
precision errors, as in Figure 7. The errors approximately decrease log-linearly before reaching
machine epsilon. Holding Nx = 4 constant and varying Ny also yields a very similar error plot.
This is because the x component of the solution coincides with a Fourier x-basis function as in
Equation 11.

The errors where Nr ≥ 20 fluctuate around εm, and this is called the round-off plateau [4]. The
shape of this curve before the round-off plateau approximately follows the largest coefficient of
the true solution when written in the basis. Note that sin is odd, so all even coefficients are
zero. The odd coefficients are given by [27]

⟨sin(πy), Tn(y)⟩ =
∫ 1

−1

sin(πy)Tn(y)√
1− y2

dy = 2

∫ 1

0

sin(πy)Tn(y)√
1− y2

dy = πJn(π),

where Jn is the n-th Bessel function (see Section 4.3). These coefficients are plotted in Figure 8.
We see that the coefficients reach machine precision at around n = 20, which is the same as the
numerical experiment in Figure 7. The log linear fit of the first 20 coefficients is also similar in
these two figures. We say that the coefficients experience supergeometric convergence with rate
approximately 2 [4].

Note also that for Ny = 3 and Nx = 4, the error is 0.3852, which is of the same order as basis
recombination in Section 3.2.

16

Figure 9: Theoretical truncation errors of the 5-point Laplacian finite difference method on the
Poisson equation (Equation 9) versus 1

∆x .

3.9 Comparison to finite difference

Using the 5-point Laplacian method in Equation 3, we get a theoretical local truncation error
of [19]

τij =
1

12
(∆x)2(ψxxxx + ψyyyy) +O((∆x)4) =

π4

6
(∆x)2ψ +O((∆x)4),

where ∆x is the chosen grid spacing for finite differencing and τij is the error at (i∆x, j∆x).
Thus the weighted normed truncation error in the L2 norm is

∥τij∥2,∆x = ∆x∥τij∥2 =
π4

6
(∆x)3

(∫
ψ2

) 1
2

+O((∆x)5) =
π4

6
(∆x)3 +O((∆x)5).

Thus, to achieve machine precision, we would require ∆x = 2.5 × 10−6 as in Figure 9. This
corresponds to 4×105 grid points along both axis. This corresponds to a much larger matrix than
the required 202 × 202 Galerkin matrix from spectral methods required for machine precision
errors, but the advantage of finite difference is that no integration (numerical or otherwise) needs
to be performed.

17

4 Circular domains in Dedalus

In Section 3, we solved the Poisson equation in a box with periodic boundary conditions along
one axis (Equation 9). But unfortunately, Dedalus cannot solve a problem with non-periodic
boundary conditions along the whole boundary of the box [6]. Instead, we must rely on Dedalus’
ability to solve problems in polar coordinates, where we can specify boundary conditions along
the boundary of a circle [5].

In this section, we will construct a Python class to solve problems in a circular domain in a
similar style to Section 3. We shall use this framework to solve a Poisson equation with a Bessel
solution.

4.1 Poisson equation on a circle

Let Ω = {(x, y) : x2 + y2 < Lr}, i.e. Ω is the open disc of radius Lr, and the boundary ∂Ω is
the unit circle. Consider the Poisson equation{

∇2ψ = q in Ω,

ψ = 0 on ∂Ω,
(14)

where q(x, y) is a smooth forcing function. We use the usual polar substitutions arising from
x = r cosφ and y = r sinφ. The Laplacian becomes [2]

∇2ψ = ψxx + ψyy = ψrr +
1

r
ψr +

1

r2
ψφφ,

and the gradient is

∇ =

(
∂r
1
r∂φ

)
.

4.2 Dedalus implementation

We now create a Dedalus solver for Equation 14 given an arbitrary forcing function q and domain
radius Lr.

As in Section 3, we present Dedalus code alongside explanations, though we switch to object
orientated programming. Class definitions can be found in Appendices C.3 and C.5. The full
code is in Appendix C.6.

We first create an abstract base class called DedalusSolver, which implements the method
make_space which defines the space Dedalus will work in, as well as useful plotting methods.
A subclass with methods make_problem and solve_problem must be created to make the
problem in Dedalus, then instruct Dedalus to solve. For this section, the subclass Poisson_Circ
implements these methods.

4.2.1 Creating the space

Within the DedalusSolver in Appendix C.5, the method make_space creates the basis and
domain. Given the radius of Ω as Lr and dealias factor dealias (see Section 5.6; for now, we
use a dealias of 1 which has no effect), we can define the coordinate system and basis.

1 coords = d3.PolarCoordinates('phi', 'r')
2 dist = d3.Distributor(coords, dtype=dtype)
3 disk = d3.DiskBasis(coords, shape=(Nphi, Nr), radius=Lr, dealias=

dealias, dtype=dtype)
4 edge = disk.edge

Note that contrary to usual conventions, Dedalus has the azimuth as the first coordinate then
the radius as the second coordinate. The number of basis functions are Nphi and Nr in the

18

azimuthal and radial directions respectively. The basis for a disc in polar coordinates is d3.
DiskBasis, which is a Fourier type basis along the azimuth (since it is 2π periodic) [6]. The
radial basis is built from Jacobi polynomials which have similar properties to Bessel functions
(Section 4.3) [32]. The disc basis allows for boundary conditions at r = Lr [32].

Now, we define our unknown field psi, and collocation grid points phi, r.

1 phi, r = dist.local_grids(disk)
2 psi = dist.Field(name='psi', bases=disk)

4.2.2 Creating the problem

As in Section 3, we implement the problem Equation 14 in Dedalus. This is done in the
make_problem method. The forcing term q_func as a function of phi and r will be given
externally later. Recall that mesh values are given to fields using ['g'].

1 q = dist.Field(bases=disk)
2 q['g'] = q_func(phi, r, Lr=Lr) # to be given later

Since we have one boundary condition, we need one tau factor.

1 tau_psi = dist.Field(name='tau_psi', bases=edge)

The following lift function lifts the tau factor to a multiple of the last function in the derivative
basis (Section 3.4).

1 def lift(A):
2 lift_basis = disk.derivative_basis(2)
3 return d3.Lift(A, lift_basis, -1)

Let ψ̂ and q̂ be discretisation of ψ and q. We can then create Equation 14 with one tau factor.
This creates a system with two equations and two unknowns.{

∇2ψ̂ + lift−1(τu) = q̂ in Ω,

ψ = 0 on ∂Ω.

1 problem = d3.LBVP([psi, tau_psi], namespace=locals())
2 problem.add_equation("lap(psi) + lift(tau_psi) = q")
3 problem.add_equation("psi(r=Lr) = 0")

4.2.3 Solving the problem

Finally, we can pass to Dedalus using the method solve_problem as in Section 2.5.

1 solver = problem.build_solver()
2 solver.solve()
3
4 phi, r = dist.local_grids(disk)
5 psig = psi.allgather_data('g')

4.3 Bessel function solution

Using the Poisson_Circ class, we solve the Equation 14 such that the forcing term q is chosen
so that ψ can be described radially by a Bessel function.

A Bessel function Jn(r) is the solutions to the differential equation [2]

r2J ′′
n + rJ ′

n + (r2 − n2)Jn = 0, r > 0,

where n ≥ 0 denotes the order of the Bessel function. When n is an integer, the Bessel function
can be written as [2]

Jn(r) =

∞∑
k=0

(−1)k

k!(k + n)!

(r
2

)2k+n
. (15)

19

If n is not an integer, then we can replace (k+n)! with the analytic continuation of the factorial
Γ(k + n+ 1) (called the gamma function). The derivative of a Bessel function is [2]

J ′
n(r) =

1

2
(Jn−1(r)− Jn+1(r)) . (16)

Since we wish to impose zero Dirichlet boundary conditions at r = LR (Equation 14), we consider
the Bessel function Jn

(
α
rLr

)
, where α is a root of Jn. It can be shown that

ψ(r, φ) = sin(nφ)Jn

(
α

Lr
r

)
(17)

describes the surface of a vibrating circular drum of radius Lr [2], and is a smooth function that
satisfies ψ(Lr, φ) = 0. Furthermore, ψ has rotational symmetry around the origin. For ψ to be
a solution of the Poisson Equation, we calculate the forcing term using Equation 16,

q(r, φ) = ∇2ψ(r, φ) =
α2 sin(nφ)

4L2
r

(
Jn−2

(
α

Lr
r

)
− 2Jn

(
α

Lr
r

)
+ Jn+2

(
α

Lr
r

))
+
α sin(nφ)

2Lrr

(
Jn−1

(
α

Lr
r

)
− Jn+1

(
α

Lr
r

))
− n2 sin(nφ)

r2
Jn

(
α

Lr
r

)
.

(18)

Thus, ψ(r, φ) = sin(nφ)Jn

(
α
Lr
r
)
is a solution to{

∇2ψ = q in Ω,

ψ = 0 on ∂Ω,

where the forcing q is as in Equation 18.

4.3.1 Dedalus implementation

We wish to solve the Equation 4.3 with forcing Equation 18. Using the classes defined in
Section 4.2, it remains to define the forcing term.

1 def bessel_q(phi, r, n=3, Lr=1):
2 r = r/Lr # Scale r
3 a = sc.jn_zeros(n, 1)[0]
4 q = (((a**2)/4) * np.sin(n*phi)) \
5 * (sc.jn(n-2, a*r) - 2*sc.jn(n, a*r) + sc.jn(n+2, a*r))\
6 + ((a/(2*r)) * np.sin(n*phi)) \
7 * (sc.jn(n-1, a*r) - sc.jn(n+1, a*r)) \
8 - (((n**2)/(r**2)) * np.sin(n*phi)) * sc.jn(n, a*r)
9 return q/Lr**2

We can then call the Poisson_Circ class. We choose a Bessel function of order 3 on a circle
of radius 1 with 256 basis functions in each direction.

1 n = 3 # Bessel order
2 Nphi, Nr = 256, 256
3 Lr = 1
4
5 bessel_lap = Poisson_Circ(Nphi, Nr, partial(bessel_q, n=n), Lr=Lr)

We also store the true solution (Equation 17) in the class.

1 def bessel(phi, r, n, Lr=1):
2 r = r/Lr # Scale r
3 a = sc.jn_zeros(n, 1)[0]
4 z = np.sin(n*phi) * sc.jn(n, a*r)

20

Figure 10: A plot of the Bessel solution to the Poisson equation as computed by Dedalus,
alongside the actual solution and the error.

Figure 11: Plots of normed errors when varying the number of basis functions for the Poisson
equation on a circular domain. The first plot varies Nr, holding Nφ = 8 constant, and the
second varies Nφ holding Nr = 14 constant.

5 return z
6
7
8 bessel_lap.actual(partial(bessel, n=n))

4.3.2 Results

The method compute_error() computes the errors as in Section 3.7, then plots them as in
Section 3.8. This results in Figure 10 and a normed error of 3.74 × 10−16, which is close to
machine precision.

As in Section 3.8, we can also investigate the effects of varying the basis sizes by using the
error_lists method, which repeatedly runs the spectral method for different Nr and Nphi.
Note that Nphi must be a multiple of 4. The argument of error_plots specifies the number
of data points to consider for the orange log linear best fit line.

1 bessel_lap.Nr, bessel_lap.Nphi = 15, 8
2
3 Nr_list = np.arange(4, 20, 1, dtype=int)
4 Nphi_list = np.arange(4, 24, 4, dtype=int)
5
6 bessel_lap.error_lists(Nphi_list, Nr_list)
7 bessel_lap.error_plots([11, 2])

Figure 11 shows that the errors eventually reach machine precision after Nr = 14 and Nφ = 8. A
smaller required number of azimuthal basis functions is expected due to the rotational symmetry
of the problem. As in Section 3.8, we see evidence of log-linear behaviour before the round-off
plateaus.

21

5 Initial value problems

In the previous sections, we looked at time-independent PDEs. We now look at PDEs that
evolve over time given an initial condition. This is called an initial value problem (IVP). This
section follows Chapters 5 to 8 of the book by LeVeque [19].

Consider an IVP u′(t) = f(u, t) with initial condition u(0) = u0. A solution in a neighbourhood
of t = 0 exists and is unique if f is Lipschitz continuous over the domain Ω and continuous over
time [19]. We shall assume that the problem, domain and solution are sufficiently regular. We
first look at common methods of timestepping, then discuss their stability. We then see how
dealiasing can improve numerical results.

5.1 Forward Euler

Consider the IVP ∂tu(t) = f(u, t). A simple timestepper is forward Euler – replacing the time
derivative in ∂tu(t) with the forward difference [19]

Un+1 − Un

∆t
= f(Un, n∆t), n ∈ Z≥0,

where Un is a discrete approximation of u(n∆t) for a suitably chosen timestep ∆t. We can then
form a linear system (similar to Equation 3) with rows

Un+1 = Un +∆tf(Un), n ∈ Z≥0,

to solve for the vector
(
U0 · · · Un+1

)T
.

Other schemes include backward Euler (backwards difference approximation for ∂tu), the trape-
zoidal Crank-Nicolson method (average of forward and backward Euler), the leapfrog method
(a 2-step method) and the general Runge–Kutta methods [19].

One-step methods (e.g. forward Euler) are advantageous over multi-step methods (e.g. leapfrog)
as they are self-starting and the timestep can be easily changed any time during simulation [19].

5.2 Linear multi-step methods

Linear multi-step methods (LMMs) is a class of timesteppers used by Dedalus to discretise along
time. The forward Euler method is a member of this class. We first define LMMs, then give
some examples and investigate their stability.

An LMM has the form

r∑
j=0

αjU
n+j = ∆t

r∑
j=0

βjf(U
n+j , (n+ j)∆t), n ∈ Z≥0. (19)

So Un+r is computed from the r previous steps Un+r−1, . . . , Un. If βr = 0, then the method is
explicit, otherwise it is implicit [19].

The Adam-Bashford methods are explicit LMMs with βr = 0, αr = 1, αr−1 = −1 and αj = 0
for j < r − 1 [19], i.e.

Un+r = Un+r−1 +∆t
r∑

j=0

βjf(U
n+j , (n+ j)∆t), n ∈ Z≥0.

The βj coefficients are chosen to maximise the order of accuracy, namely order r when the
scheme is explicit. This can be done by looking at the local truncation errors [19].

The forward Euler scheme is an explicit one-step Adam-Bashford method with β0 = 1 (some-
times called AB1 [6]). The Crank-Nicolson scheme is an implicit one-step LMM Adam-Moulton

22

method with β0 = β1 = 1
2 [19]. The Adam-Moulton methods are a generalisation of Adam-

Bashford, where βr is allowed to be nonzero.

5.3 Absolute stability

Absolute stability is a property of a PDE and timestepper that yields information on the suit-
ability of the timestepper for the problem [19]. We wish for the method to be stable.

Consider the von Neumann problem

u′(t) = λu(t), u(0) = 1, t ≥ 0,

for a parameter λ ∈ C. Forward Euler over the time dimension with timestep ∆t gives

Un+1 = (1 + λ∆t)Un, n ∈ Z≥0.

This recursion is a geometric sequence with ratio 1 + λ∆t, and so we expect convergence when
|1+λ∆t| ≤ 1. When |1+λ∆t| ≤ 1, we say that the method is absolutely stable; otherwise, it is
unstable. Thus, we have absolute stability when the value of λ∆t is inside the circle of radius 1
centred at −1 in the complex plane as in Figure 12.

For a general linear PDE, the problem can be represented by a matrix, and λ will instead be
a (possibly complex) eigenvalue of the matrix [19] as discussed in Section 5.4. Figure 12 shows
the stability regions of λ∆t in the complex plane for common one-step methods.

In general, an LMM for the von Neumann problem is

r∑
j=0

αjU
n+j = ∆t

r∑
j=0

βjλU
n+j , n ∈ Z≥0,

which gives
r∑

j=0

(αj − λ∆tβj)U
n+j = 0, n ∈ Z≥0.

This is a difference equation, and has a solution (when given initial conditions U0, . . . , U r−1 for
the first r steps) of the form [19]

Un = c1ζ
n
1 + c2ζ

n
2 + · · ·+ crζ

n
r ,

where the ci are arbitrary constants and ζi are the roots of the characteristic polynomial (often
called the stability polynomial)

π(ζ;λ∆t) :=

r∑
j=0

(αj − λ∆tβj)ζ
j = (αr − λ∆tβr)

r∏
j=1

(ζ − ζj).

The region of stability for this LMM is the set of points λ∆t on the complex plane such that
the roots of π satisfy {

|ζj | ≤ 1 for j = 1, 2, . . . , r,

|ζj | < 1 if ζj is a repeated root of π.

For Euler’s method, π(ζ : λ∆t) = ζ − (1 + λ∆t), which retrieves the same circle as before. The
characteristic polynomials for common scheme are in LeVeque [19]. Their stability regions are
shown in Figure 12. We see that implicit timesteppers have unbounded stability regions, while
explicit methods do.

In general, stability regions are not as regular as the circle of forward Euler. Furthermore, high
degree polynomials do not usually have analytic solutions. [14, Parshall. The development of
abstract algebra]. To numerically find the region of stability from the characteristic polynomial,
we mesh a grid on the complex plane for λ∆t. Then for each λ∆t, we can find max |ζj | using

23

Figure 12: Stability regions for common time schemes. The first row shows explicit schemes,
and the second has implicit schemes. Figure adapted from [19, Fig 7.1], [19, Fig 7.2] and [19,
Fig 8.5] using code from [24].

numerical methods (e.g. np.roots), and test whether this is ≤ 1 or not, corresponding to being
inside the region or outside respectively [24].

The stability polynomial of a consistent LMM has a root ζ1 = 1. So when λ∆t is near the origin,

ζ1(λ∆t) = eλ∆t +O
(
(λ∆t)p+1

)
, as λ∆t→ 0,

if the scheme is p-th order accurate [19].

5.4 Systems of PDEs

Let u′(t) = Au(t) where u(t) ∈ Rm and A ∈ Rm×m a matrix. Suppose that A is diagonalisable
with eigenvalues λj and corresponding linearly independent eigenvectors rj for j = 1, . . . ,m.
Write A = RΛR−1 where Λ is the diagonal matrix of eigenvalues, and R the matrix of eigenvec-
tors. Then we can perform a change of variable v(t) = R−1u(t) to get the decoupled system [19]

v′(t) = Λv(t).

We can then perform our chosen time method to each independent equation separately on the
eigenvalues λj . For absolute stability, each separate equation needs to be stable, namely ∆tλj
needs to be inside the region of stability for the scheme for all j = 1, . . . ,m; i.e. argmaxj |∆tλj |
must be in the stability region.

5.5 Stiffness

A problem ∂tu(t) = f(u, t) is called stiff if the solution is perturbed, the perturbed data varies
rapidly; concretely, ∂uf(t, u) ≫ ∂t(u) [19]. For a system of equations, the stiffness ratio is

defined to be
max |λj |
min |λj | over the eigenvalues λj of the Jacobian ∂uf(t, u). Schemes with bounded

regions of stability (such as forward Euler or explicit Adam-Bashford methods) are not suited
for stiff problems, whereas those with unbounded regions of stability (such as Crank-Nicolson
and backward Euler) are appropriate for stiff problems [19].

24

Figure 13: Plots of dealiasing effects. The first plot shows ψ = (1 + 2 sin(πx)2 with basis
B1 with dealiasing scale s = 2. The dotted curve is the actual function, the orange curve is
the least squares approximation with B1 without dealiasing, and the green curve is the least
squares approximation with dealiasing (i.e. use B2, then truncate to B1). The second shows
ψ = 10 sin(πx)+4 sin(3πx)+6 sin(6πx)+ sin(10πx) with basis B5 (i.e. Equation 20 with n ≤ 5)
and dealiasing s = 2. Code can be found in Appendix C.10.

5.6 Dealiasing

When viewing a video of a fan or helicopter blades, illusions can occur (Chapter 11 of Boyd [4]).
Since a video has a finite number of frames per second (e.g. 30 FPS), the blades may appear
to move in the opposite direction, seem stationary, or move slower than they truly are. This is
called aliasing [4], in which discrete sampling causes errors. An object rotating faster than 30
revolutions per second in a 30 FPS video will have their frequency aliased to a frequency less
than or equal to 30 revolutions per second.

In the case of spectral methods, truncating the number of basis functions used in Equation 4
can introduce discretisation errors [4] as lower degree basis functions cannot resolve high degree
behaviour. This causes numerical issues in nonlinear equations [5]. One way to fix these errors
is to increase the number of basis functions. But this is not always practical, especially as this
increases the computational cost. The second way is to introduce a dealias scaling.

The dealias s transforms the truncated N basis functions to a scaled set of basis functions of
size sN [5]. For each intermediate calculation when implementing a spectral method, we use
sN basis functions, but only keep the lowest N [4]. As a rule-of-thumb, s ≥ 3

2 is a good choice
[5]. Dealiasing should be used when the computed solution is only marginally resolved. But if
the solution is poorly resolved, then dealiasing will not help, and the number of basis functions
must be increased [4].

For example, consider the following Fourier type basis B on the interval [0, 1]:

φ0(x) = 1, φn(x) = sin(nπx), φ−n(x) = cos(nπx), n ∈ Z>0. (20)

Note that this basis is not orthogonal with respect to the usual L2 inner product. Consider the
zeroth order differential equation

ψ(x) = (1 + 2 sin(πx))2 .

Then ψ can be expressed exactly in the basis as

ψ(x) = 3 + 4 sin(πx)− 2 cos(2πx) = 3φ0(x) + 4φ1(x)− 2φ−2(x).

Suppose we use the subset B1 = {φ0, φ1, φ−1} as our spectral basis. Then ψ cannot be expressed
exactly. Since the basis is not orthogonal, we form the mass matrix M (Equation 12) to write

25

ψ in terms of the basis B1:

M =

 ⟨φ0, φ0⟩ ⟨φ0, φ1⟩ ⟨φ0, φ−1⟩
⟨φ1, φ0⟩ ⟨φ1, φ1⟩ ⟨φ1, φ−1⟩
⟨φ−1, φ0⟩ ⟨φ−1, φ1⟩ ⟨φ−1, φ−1⟩

 =

1 2
π 0

2
π

1
2 0

0 0 1
2

 .

So, we get the matrix system

Ma = b, a =

 a0
a1
a−1

 , b =

 ⟨φ0, ψ⟩
⟨φ1, ψ⟩
⟨φ−1, ψ⟩

 =

 3 + 8
π

2 + 22
3π

0

 .

Solving the matrix system yields (a0, a1, a−1) = (0.147, 8.481, 0). This causes the second order
mode in ψ to be approximated as a first order mode, leading to the coefficient of φ1 being
larger than expected. Using dealiasing s = 2 (so truncating from {a0, a1, a2, a−1, a−2}) yields
the coefficients (3, 4, 0), which captures the behaviour of the lower order modes correctly. This
is shown in Figure 13 along with a higher order example.

Note that for a zeroth order differential equations on an orthogonal spectral basis (e.g. the usual
Fourier basis on the interval as in Section 2.1.2), dealiasing does not do anything as the mass
matrix is always diagonal, and adding more basis functions adds an equation independent to
existing rows of the mass matrix equation. Thus in this case, truncation yields the same result
as the original mass matrix equation. For higher order differential equations with an orthogonal
spectral basis, dealiasing may have an effect as the Galerkin matrix (Section 2.2.2) does not
have to be diagonal, so adding extra rows may change the least squares results.

5.7 Dedalus implementation

We now put everything together and discuss how Dedalus uses this theory. Consider an IVP of
the form

M∂tu+ Lu = f(u, t),

where M and L are matrices, u a vector and Lu is a linear stiff term (i.e. the stiffness ratio
of L is small). Then a r-step LMM with timestep ∆t for this problem has a similar form to
Equation 19 [33]:

r∑
j=0

αjMUn+j +∆t
r∑

j=0

βjLU
n+j = ∆t

r∑
j=0

γjF
n+j , n ∈ Z≥0,

where Fn+j = f(Un+j , (n + j)∆t). By splitting the stiff term away from f we may apply an
explicit scheme to the non-stiff side, and a implicit method for the stiff side. This is called an
implicit-explicit multistep method (IMEX) [5].

Using γr = 0 (arising from the explicit method) and rearranging yields(
1

∆t
a0M + b0L

)
Un =

r∑
j=1

(
cjF

n−j − 1

∆t
ajMUn−j − bjLU

n−j

)
,

where aj = αs−j , bj = βr−j and cj = γr−j [6].

Dedalus implements the MultistepIMEX class which requires the coefficients aj , bj , cj for
j = 0, . . . , r to be chosen. Note that we always have c0 = 0. By studying the local truncation
error, constraints can be placed on these coefficients to achieve a specific p-th order accurate
scheme [33].

For example, if r = 1, a = [a0, a1] = [1,−1], b = [12 ,
1
2], c = [0, 1], we apply second order

Crank-Nicolson to the implicit term, and first order AB1 to the explicit term. This is a first
order one-step scheme called CNAB1 [6].

26

The SBDF2 scheme is a second order two-step scheme [6] with coefficients a = [32 ,−2, 12], b =
[1, 0, 0] and c = [0, 2,−1]. This is second order BDF2 (2-step backwards differentiation [19])
implicitly and second order extrapolation explicitly [33]. The SBDF3 scheme is similar, except
is is instead third order accurate [6].

The CNLF2 scheme is a second order scheme that uses Crank-Nicolson implicitly and leapfrog
explicitly. It has coefficients a = [12 , 0,−

1
2], b = [12 , 0,

1
2] and c = [0, 1, 0] [6].

These schemes can be modified to accept a varying timestep ∆tn by making the coefficients
aj , bj , cj a function of the timestep ratio ωn = ∆tn

∆tn−1
, as implemented in the Dedalus documen-

tation [6]. If the timestep is to change, it must be done so slowly to avoid numerical issues [5].

27

6 Solid body rotation in Dedalus

In this section, we demonstrate the implementation of IVPs in Dedalus by solving an advection
equation with a solid body rotation solution. We will also compare the effects of a changing
timestep on stability, and the effectiveness of different timesteppers. The time_PDE class defined
in this section will be used to solve the main Stommel–Munk problem in Section 7.

Let the domain Ω be a disc of radius Lr. Two-dimensional advection can be described as the
PDE

∂tψ +
1

2
∇⊥r2 · ∇ψ = 0. (21)

The second term can be rewritten in polar coordinates as

1

2
∇⊥r2 · ∇ψ =

1

2

(
0
2r

)
·
(
∂rψ
1
r∂φψ

)
= ∂φψ.

Thus the problem can be reduced to

∂tψ = −∂φψ. (22)

Angular velocity is defined as ∂tφ [8]. The chain rule gives ∂tψ = ∂φψ · ∂tφ, and so the angular
velocity of ψ in Equation 21 is

∂tφ =
∂tψ

∂φψ
= −1.

Thus, we expect the body u to rotate anti-clockwise at a angular speed of 1 radian per time
unit.

As in Section 3, selected Dedalus code will be presented alongside explanations. Note that as in
Section 4, object orientated programming is used. The full code can be found in Appendix C.8
and class definitions in Appendices C.3, C.5 and C.7.

The subclass time_PDE of DedalusSolver is a solver for any time-dependent PDE and im-
plements the method solve_problem which timesteps a solver. There are also methods for
plotting and animating. As in Section 4.2.1, a disc basis is created with resolution Nphi and
Nr within the method make_space. A subclass of rotation_PDE of time_PDE will imple-
ment problem specific details for solid body rotation. We will also use this class in Section 7 to
implement our main problem.

6.1 Class initialisation

The time_PDE takes the following initialisation values.

1 def __init__(self,
2 Nphi,
3 Nr,
4 initial_func,
5 *,
6 Lr=1,
7 dealias=2,
8 timestepper=d3.SBDF2,
9 stop_sim_time=np.pi/2,
10 timestep=0.1,
11 local=True,
12 save_every=1,
13 scales=1,
14 save_name=None,
15 import_previous=False,
16 variable_name=None,
17 **kwargs):

28

� Nphi and Nr are the number of azimuthal and radial basis vectors.

� initial_func is a function describing the initial condition ψ(t = 0).

� Lr is the radius of the circular domain Ω.

� dealias is the dealising factor.

� timestepper is the timestepper for the simulation.

� stop_sim_time is the end time for the simulation.

� timestep is the timestep.

� local determines whether the output is stored in RAM, or to the drive.

� save_every takes a snapshot every specified number of timesteps.

� save_name file name to save as if local=False. If set to None, it defaults to a timestamp.

� scales is the snapshot mesh scale. This does not affect the numerics. A higher number
gives more resolution in post-processing [5].

� If import_previous is true, then instead of running a simulation, it imports a previously
run simulation from save_name.

� variable_name is the name of the field of interest.

� kwargs is a dictionary of parameters that will all be saved to the class (use with caution
to avoid overwriting).

6.2 Creating the problem

We begin by creating a field for ψ and time t.

1 psi = dist.Field(name='psi', bases=disk)
2 t = dist.Field()

Next, we create a vector field for ∂φψ.

1 phi, r = dist.local_grids(disk)
2 u = dist.VectorField(coords, bases=disk)
3 u['g'][0] = r
4 u['g'][1] = 0

Alternatively, we could get Dedalus to work with ∇⊥ directly via skew(grad), but in this case
it is faster (both computationally, and code writing) to work directly with coordinates. The
problem can now be simply implemented as Equation 22.

1 problem = d3.IVP([psi], time=t, namespace=locals())
2 problem.add_equation("dt(psi) = - u @ grad(psi)")

No boundary conditions are used, and thus no tau factors are needed.

The initial conditions are set by defining psi['g'] using the initial function from initialisation.

1 q['g'] = self.initial_func(phi, r)

6.3 Solving the problem in time

The following instructs Dedalus to build a solver.

1 solver = problem.build_solver(self.timestepper)
2 solver.stop_sim_time = stop_sim_time

We then create a loop with step size timestep for Dedalus to run over. Here, we log a progress
report every 100 timesteps and save a snapshot every save_every timesteps.

29

1 sim_dt = save_every * timestep
2 q.change_scales(scales=self.scales)
3 q_list = [np.copy(q['g'])]
4 t_list = [solver.sim_time]
5
6 while solver.proceed:
7 solver.step(timestep)
8
9 if solver.iteration % 100 == 0:
10 logger.info('Iteration=%i, Time=%e, dt=%e'
11 % (solver.iteration, solver.sim_time,
12 timestep))
13
14 if solver.iteration % iteration == 0:
15 q.change_scales(scales=self.scales)
16 q_list.append(np.copy(q['g']))
17 t_list.append(solver.sim_time)

The line solver.step(timestep) tells Dedalus to take one timestep [6]. This single timestep
is solved as a time-dependent problem. Snapshots are saved to the lists q_list and snapshot
times are saved to t_list. The resolution of a snapshot can be increased with larger self.
scales (the default is 1). This scaling works by increasing the number of collocation points
Dedalus uses in post-processing. Since spectral methods do not depend on a grid in space and
only relies on a set of basis functions, we are free to evaluate the resulting liner combination of
the basis functions over any reasonable grid.

6.4 Solving the advection equation

The problem is solved by running the following code after defining the relevant classes. We use
the degree 3 Bessel function as the initial condition on the unit circle from Section 4.3

1 Lr = 1
2
3
4 def initial_func(phi,r):
5 return bessel_q(phi, r, n=3, Lr=Lr)

We use 27 basis functions along both axis (chosen for good resolution and reasonable computa-
tional time). We also double the collocation points along both axis for more resolution.

1 Nphi, Nr = 2**7, 2**7
2 scales = 2

Since we expect ψ to rotate about the origin every 2π time units, we choose a run time of 30π
and snapshot every π

2 time units. For this problem, a timestep of π
400 is sufficient as shall be

seen in Section 6.5. We wish to keep all timesteps rational multiples of π for easier error analysis
later.

1 time_step = np.pi/400
2 stop_sim_time = 30*np.pi + time_step
3 save_every = 200

For the timestepper, we use the third order timestepper SBDF3. Other timesteppers are inves-
tigated in Section 6.5.2.

1 timestepper = d3.SBDF3

With the above parameters, we call the rotation_PDE class and save the snapshots to the
drive (see Appendix C.7.1 for more details).

1 rotation_bessel = rotation_PDE(Nphi, Nr,
2 initial_func,
3 Lr=Lr,

30

Figure 14: Snapshots of the solution to solid body rotation with initial condition given by the
third order Bessel function. The timestepper used is SBDF3 with a timestep of π

400 .

Figure 15: Grid points of the disc basis with 256 radial and 256 azimuthal basis functions. We
see more grid points along the boundary and in the centre.

4 stop_sim_time=stop_sim_time,
5 timestep=time_step,
6 timestepper=timestepper,
7 local=False,
8 save_every=save_every,
9 scales=scales)

6.5 Results

Using the animate method, we can create an animation of ψ’s evolution over time. This method
uses matplotlib.animation.FuncAnimation as in Appendix C.7. Instead of embedding an
animation into this dissertation, we may use the time_plotmethod which plots static snapshots
at specific indices normalised to the interval [0, 1].

1 rotation_bessel.time_plot([0, 0.07, 0.17, 1])

These plots are shown in Figure 14. We can see clear evidence of rotation in the first 2π seconds.
When viewing the animation, it rotates a total of 15 times in the interval [0, 30π], as expected.

To explicitly evaluate the accuracy of the simulation, we can compare multiples of t = 2π to the
initial condition. Note that there will be some rounding errors arising from the fact that π is
irrational. Dedalus can return field field evaluations at collocation points using the 'g' selector,
or the coefficients of the spectral basis using 'c'. We choose to directly store the grid points
for ease of visualisation.

For simplicity, instead of evaluating the integrals in Section 2.4 to compute the errors, we
estimate the integral over the grid of collocation points following a similar method to the weighted
two-norm in LeVeque [19]. Here, our grid has size 256× 256. Although the grid spacing is not

31

Figure 16: Norm of errors of the solution to solid body rotation at multiples of t = 2π for SBDF3
and a timestep of π

400 .

Figure 17: Norm of errors of the solution to solid body rotation at multiples of t = 2π for SBDF3
and a timestep of π

350 and π
300 .

uniform as in Figure 15, for simplicity we perform a uniform weighting over the grid points. If
we wanted to compare ψ(t = 0) and ψ(t = 2π), we evaluate

∥ψ(t = 0)− ψ(t = 2π)∥2 =

(
1

2562

∑
r,φ

|ψ(t = 0, r, φ)− ψ(t = 2π, r, φ)|2
) 1

2

,

where the sum is over all collocation points (r, φ). This can be viewed as an unweighted average
of the squared difference of the grid points.

The code in Appendix C.8.1 implements this, and returns the plot in Figure 16. The errors
are reasonably small, but increase slightly over time. This may partially be due to Python’s
handling of floats.

6.5.1 Comparison of different timesteps

If we increase the slightly timestep, we would expect the errors to increase slightly. But if the
timestep increases too much, we would get exponential growth due to numerical instability,
since we have a nonzero forcing term on the right side of the implementation of Equation 22.
This means Dedalus uses an explicit method which would put us outside the region of absolute
stability.

In Figure 17, we see that the normed errors linearly increase hen the timestep is π
350 with a

slightly greater slope than when the timestep was π
400 . We see exponential growth when the

timestep is π
300 .

32

Figure 18: Norm of errors of the solution to solid body rotation at multiples of t = 2π with a
timestep of π

400 and timesteppers SBDF2 and CNLF2.

6.5.2 Experimental comparison of timesteppers

In Figure 18, we use a timestep of π
400 for various timesteppers. We see exponential growth for

SBDF2, which is expected since it is only an order 2 method (lower than the order of SBDF3).
The second order scheme CNLF2 is stable for the timestep π

400 , but the slope of the error line
is an order of magnitude larger than SBDF3.

Thus, we see that SBDF3 with a timestep of π
400 is a reasonably good choice of timestepper for

the solid body rotation problem. We will use SBDF3 to solve the Stommel–Munk problem in
the next section.

33

7 The Stommel–Munk problem

In 1948, Stommel proposed an ocean model describing westward intensification of wind driven
currents [30]. This behaviour causes more streamlines on the west side of a domain, compared to
the east boundary. This occurs due to the Coriolis effect (Section 7.1). Westward intensification
is evident in NASA’s visualisation of the Gulf Stream in Figure 1. We describe Stommel’s
original model in Section 7.3.1, and discuss the effects of wind forcing.

In response to Stommel’s model, Munk published a paper in 1950, changing Stommel’s drag
term to a harmonic viscosity [23], which better explains observed real-world data.

We first follow Vallis’ [31] derivation of the Stommel–Munk model from Chapters 2, 4, 5 and 19.
Then we use Dedalus to simulate this model using all the framework built in the previous
sections.

7.1 Coriolis effect

The Coriolis force is a quasi-force on a moving object in a rotating inertial frame [32], for example,
water moving on a rotating planet. Let r(x, t) be the position of a moving object inside a rotating
inertial frame. Then we can split ∆r into its relative and rotational components respectively by
following Vallis [31]

(∆r)I = (∆r)R + (∆r)rot,

where (∆r)R is the movement within the frame, and (∆r)rot is due to the rotation of the inertial
frame. Using the fact that (∆r)rot = ω × rδt [31], where ω is the constant angular velocity, we
get

(∂tr)I = (∂tr)R + ω × r. (23)

Let vI := (∂tr)I be the inertial velocity and vR := (∂tr)R be the relative velocity. Then
Equation 23 becomes vI = vR + ω × r. Substituting vR for r yields

(∂tvR)I = (∂tvR)R + ω × vR,

thus
(∂t(vI − ω × r))I = (∂tvR)R + ω × vR.

It follows that [31]

(∂tvR)R = (∂tvI)I + (−2ω × vR)︸ ︷︷ ︸
Coriolis force

+(−ω × (ω × r))︸ ︷︷ ︸
centrifugal force

.

The Coriolis effect acts on moving objects perpendicularly to their direction of travel [31]. Let
f := 2ω sin y be the Coriolis parameter (proportional to the norm of the Coriolis force), where
ω = |ω|. Since this magnitude varies with latitude, we can approximate the Coriolis parameter
by performing a Taylor expansion

f = f0 + βy,

where f0 := 2ω sin y0 (at the expansion point) and β := ∂yf = 2ω
Lr

cos y is the Rossby parameter
(Lr is the radius of domain). This is called the β-plane approximation [31].

7.2 Vorticity equation

From the general two-dimensional vorticity equation in a rotating frame ([31] Equation 4.66), if
we assume that the flow is inviscid and incompressible, we have

Dt(ζ + f) = 0,

where ζ is the vorticity, Dt = ∂t +∇⊥ψ · ∇ is the material derivative (ψ is the stream function)
and f is the Coriolis parameter. By assuming that f is constant in time and using the β-plane

34

approximation, we get
∂tζ +∇⊥ψ · ∇(ζ + βy) = 0, (24)

as ∇f = (0, β)T . This is known as the two-dimensional β-plane vorticity equation [31].

7.3 The model

Consider a large circular body of water such that its radius Lr is much larger than its depth.
We also assume the ocean has a flat bottom, so that the depth of water is a constant H, and
that any waves on the surface do not significantly contribute to the depth. Then we can use a
shallow water approximation, and treat this as a two dimensional problem [31]. So Section 7.2
can be applied.

7.3.1 Stommel model

By forcing the vorticity equation (Equation 24) with wind-stress curl and linear drag, we obtain
the time-dependent Stommel problem [31]

∂tζ +∇⊥ψ · ∇(ζ + βy) = Q(y)︸ ︷︷ ︸
wind forcing

+(−r0∇2ψ)︸ ︷︷ ︸
drag

, (25)

where Q(y) is a latitude dependent wind forcing term, and r0 is a damping coefficient due to
frictional dissipation.

By ignoring the Dtζ term in Equation 25, we obtain Stommel’s original time-independent
model [30]

r0∇2ψ +∇⊥ψ · ∇(βy) = Q(y). (26)

The term ∇⊥ψ · ∇(βy) = β∂xψ is known as planetary vorticity [23].

7.3.2 Munk Model

A modification to the Stommel problem is to replace the friction term −r0∇2ψ with a harmonic
viscosity term ν∇2ζ [23],

∂tζ +∇⊥ψ · ∇(ζ + βy) = Q(y)︸ ︷︷ ︸
wind forcing

+ ν∇2ζ︸ ︷︷ ︸
viscoscity

. (27)

This change takes into account the fact that currents vanish at greater depths [23].

7.3.3 Stommel–Munk model

The Stommel–Munk model uses both the Stommel friction and the Munk viscosity for damping.
Combining Equations 25 and 27, we get

∂tζ +∇⊥ψ · ∇(ζ + βy) = Q(y)︸ ︷︷ ︸
wind forcing

+(−r0∇2ψ)︸ ︷︷ ︸
drag

+ ν∇2ζ︸ ︷︷ ︸
viscoscity

We need two boundary conditions on ∂Ω to solve this problem uniquely [31]. The first will be
ψ = 0, which ensures no normal flow at the boundary. The second is zero-vorticity ζ = 0, called
free slip [31]. This helps to keep momentum inside the domain, and so the viscosity ν can create
eddy currents [31].

While Stommel and Munk’s original formulations consider a rectangular domain, we use a
circular domain for our Dedalus implementation (see Section 4), i.e. Ω is a circle of radius Lr.

35

Including the boundary conditions yields the full Stommel–Munk problem.
∂tζ + r0∇2ψ − ν∇2ζ = −∇⊥ψ · ∇(ζ + βy) +Q(y) on Ω,

∇2ψ − ζ = 0 on Ω,

ψ = 0 on ∂Ω,

ζ = 0 on ∂Ω,

(28)

where y = r sinφ. We wish to solve for the stream function ψ and vorticity ζ over time. The
parameters are wind forcing Q(y), Rossby parameter β, viscosity ν and drag r0. These are given
explicit values in Section 7.3.5.

7.3.4 Initial conditions

For the initial conditions of the Stommel–Munk problem, we need to set a small smooth non-zero
function for both ψ and ζ, such that they satisfy Equation 28. To do this, we choose a function
ζ that satisfies ζ(r = Lr) = 0. Then we solve for ψ in we{

∇2ψ = ζ in Ω,

ψ = 0 on ∂Ω.

Following the method of solving a Poisson equation over a circular domain in Section 4, we can
use Dedalus to solve this PDE using one tau factor. The following function is implemented as a
method of the subclass stommel_PDE used to solve the Stommel–Munk problem (Section 7.5).

1 def initial_condition(self, psi, zeta):
2 # Tau method
3 tau = self.dist.Field(name='tau_zeta', bases=self.edge)
4
5 def lift(A):
6 lift_basis = self.disk.derivative_basis()
7 return d3.Lift(A, lift_basis, -1)
8
9 # problem
10 ic_problem = d3.LBVP([psi, tau], namespace=locals())
11 ic_problem.add_equation("lap(psi) + lift(tau) = zeta")
12 ic_problem.add_equation("psi(r=self.Lr) = 0")
13
14 # Solver
15 solver = ic_problem.build_solver()
16 solver.solve()
17 return psi

From Section 4.3, we already know that the smooth function

ζ(r, φ) = sin(2φ)J2

(
α

Lr
r

)
,

where α is a root of the second Bessel function J2, satisfies the boundary condition ζ(r = Lr)
(by construction). Then the above Dedalus code finds ψ from this choice of ζ at t = 0.

7.3.5 Parameter choices

Our parameters use standard SI convention for units [3], as opposed to CGS convention in [30]
and [23]. These parameters are summarised in Appendix B. Ocean depth H, wind forcing
strength F , wind forcing shift Qshift and viscosity ν are the parameters we tune in Section 7.6.

Domain size For the radius of the circular domain, we use Lr = 2 × 106m. This is of the
same order of magnitude as the rectangular domain from [30]. We use a constant ocean depth

36

Figure 19: The first plot shows the wind forcing Q(y) (Equation 30) with parameters Lr =
2 × 106m, Qshift = 1%, F = 0.1Nm−2 and H = 500m and ρ0 = 103 kgm−3. The second
plot shows the wind stress (Equation 29). The final plot shows analytic solutions to the time-
independent Stommel problem on a rectangular domain (Equation 31).

of H = 500m. The Gulf Stream within the Atlantic Ocean has similar dimensions [35].

Wind forcing The oceans experience wind forcing based on latitude [30]. For simplicity, we
do not use true observed data of the wind stress (which can be complicated as in Figure 2
of [23]). Instead, we will use a sinusoidal stress [30]

− F

ρ0LrH
cos

(
πy

Lr

)
,

where F is a wind strength parameter. The density of water is around ρ0 = 103 kgm−3. To
break symmetry (see Section 7.6.2), we shift the wind forcing northwards by a small amount
QshiftLr to get

− F

ρ0LrH
cos

(
π(y +QshiftLr)

Lr

)
. (29)

The derivative of the wind stress is

Q(y) =
Fπ

ρ0LrH
sin

(
π(y +QshiftLr)

Lr

)
, (30)

We use a wind strength F = 0.1Nm−2 and Qshift = 1%. Both H and F are slightly different to
Stommel’s parameter choices [30] to weaken the effects of wind forcing, because spectral methods
can handle higher resolutions with lower damping. These parameters are tweaked so that the jets
appearing in Section 7.6 travel approximately half way across the domain. If max |Q| = Fπ

ρ0LrH
is too big, then the wind forces the system excessively, causing the jets to crash into the eastern
boundary and causing unrealistic chaotic behaviour as discussed in Section 7.6.2.

The wind forcing is plotted in Figure 19 with concrete values for the parameters.

Coriolis parameters The Rossby parameter is β = 2ω
Lr

cos y, where ω = 7.25 × 10−5 rad s−1

is the angular speed of Earth’s rotation [1, Earth Rotation. Dickey]. So, we use β = 2 ×
10−11 s−1m−1.

Damping We use r0 = 2 × 10−7N for drag, which is the same as Stommel’s value [30] (who
uses dynes instead of Newtons). For viscosity, Munk [23] uses 5× 103m2 s−1. The smaller this
viscosity is, the more eddy currents appear. Thus, we use ν = 80m2 s−1, which spectral methods
can resolve with a reasonable amount of basis functions.

37

Simulation time We use a total simulation time T of 1 year with snapshots every week and a
timestep ∆t of 6 minutes. Increasing the timestep may cause numerical problems (see Section 5.5
and Section 6.5.1). This simulation time encompasses the behaviour in Section 7.4 and takes a
total of around 2.5 hours to run with 256 basis functions along both axis as in Section 7.6.1.

7.4 Expected behaviour

Given a small initial condition as in Section 7.3.4, all terms in Equation 28 are small, except
Q. So, when t is small, Q dominates. Thus ζ ∼ Qt, i.e. vorticity grows linearly. As ζ = ∇2ψ
grows, the terms in Equation 28 continue to grow, but ∇2ζ will grow the slowest. Thus, at
the beginning of the simulation, we may ignore −ν∇2ζ, and be left with the Stommel problem
(Equation 25).

The Stommel problem here has a solution similar to the result in the lower pane of [31, Fig.
19.6] – two vortices (called gyres) form in the north and south of the domain. These gyres move
to the western boundary, causing westward intensification. This can be analytically observed by
splitting ψ into two parts – an interior term, and a boundary correction term [31]. Inside the
interior, the drag term −r0∇2ψ is negligible, so we can consider the effects of wind forcing only.
This yields a dimensionless solution of the time-independent Stommel problem in a rectangular
domain of the form [31, Section 19.1.2]

ψ(x, y) = (1− x)π sinπy︸ ︷︷ ︸
interior

− e−
x
ε π sinπy︸ ︷︷ ︸
boundary

, (31)

where ε is a constant depending on parameters. Increasing magnitudes of the level curves of this
shows ψ’s evolution over time as in the third plot of Figure 19, where westward intensification
of the level sets can be observed.

After the initial westward intensification, −ν∇2ζ becomes non-negligible, and we must consider
the whole Stommel–Munk problem. We wish for eventual formation of eddy currents from the
Rossby waves to create a simulation that resembles the Earth’s oceans in Figure 1.

7.5 Dedalus implementation

As in Section 6, we will use the time_PDE class from Section 6.1. We will need to create
a subclass stommel_PDE specific to the Stommel–Monk problem, implementing the PDE in
Equation 28. Then, this will be solved with the method outlined in Section 6.3.

7.5.1 Creating the problem

We first create fields for two variables to solve for on the disc, the stream function ψ and
vorticity ζ.

1 psi = dist.Field(name='psi', bases=disk)
2 zeta = dist.Field(name='zeta', bases=disk)

We then create a field for y = r sinφ.

1 phi, r = dist.local_grids(disk)
2 y = dist.Field(name='y', bases=disk)
3 y['g'] = r * np.sin(phi)

We also define the wind forcing Q from Equation 30.

1 Q = dist.Field(name='Q', bases=disk)
2 Q['g'] = (F * np.pi / (rho0 * Lr * H)) * np.sin(np.pi * r * np.sin(phi

) /Lr)

Since there are two boundary conditions, we need two tau factors.

38

1 tau_zeta = dist.Field(name='tau_zeta', bases=edge)
2 tau_psi = dist.Field(name='tau_psi', bases=edge)
3
4 def lift(A, i=-1):
5 lift_basis = disk.derivative_basis(2)
6 return d3.Lift(A, lift_basis, i)

We can now implement the Stommel–Munk problem (Equation 28) in Dedalus.

1 problem = d3.IVP([zeta, psi, tau_zeta, tau_psi], time=t, namespace=
locals())

2 problem.add_equation("dt(zeta) + r0 * lap(psi) - nu * lap(zeta) +
lift(tau_zeta, -2) \

3 = -skew(grad(psi)) @ grad(zeta + beta * y) + Q")
4 problem.add_equation("lap(psi) - zeta + lift(tau_psi, -1) = 0")
5 problem.add_equation("psi(r=Lr) = 0")
6 problem.add_equation("zeta(r=Lr) = 0")

We then set the ζ initial condition using the Bessel function defined in Section 4.3.1. The ψ
initial condition is set by solving a PDE as in Section 7.3.4.

1 def zeta_init(phi, r):
2 phi_mesh, r_mesh = np.meshgrid(phi, r)
3 return 1e-16 * partial(bessel, n=n, Lr=Lr)(phi_mesh, r_mesh).T
4
5
6 zeta['g'] = zeta_init(phi, r)
7 psi = self.initial_condition(psi, zeta)

Then we set the parameters based on Section 7.3.5.

1 Lr = 2e6
2 constants = {
3 'F' : 0.1,
4 'H' : 500,
5 'r0' : 2e-7,
6 'beta' : 2e-11,
7 'nu' : 80,
8 'rho0' : 1000,
9 'Q_shift' : 0.01}

For the basis functions, we use 256 along both the azimuthal and radial components of the disc
basis.

1 Nphi, Nr = 256, 256

Since SBDF3 was a reasonable choice for the solid body rotation problem in Section 6, we use
it for the Stommel–Monk problem, along with a dealias scale of 2 (i.e. double the number of
basis functions before truncating).

1 timestepper = d3.SBDF3
2 dealias = 2

We choose a timestep of 6 minutes for a period of 1 year. Snapshots will happen every week
with collocation resolution increased threefold.

1 time_step = 6 * 60
2 stop_sim_time = 60 * 60 * 24 * 365
3
4 save_every = (60 * 60 * 24 * 7) // time_step
5 scale = 3

We can then run the solver.

1 stommel_bessel = stommel_PDE(Nphi, Nr,
2 initial_func,

39

Figure 20: Early behaviour of the stream function ψ of the Stommel–Munk problem with
parameters Qshift = 1%, ν = 80m2 s, F = 0.1Nm−2 and H = 500m as given in Appendix B.3
and explained in Section 7.3.5.

Figure 21: Plot of the unweighted average magnitude of the Munk viscosity term ∇2ζ for
the Stommel–Munk problem with parameters Qshift = 1%, ν = 80m2 s, F = 0.1Nm−2 and
H = 500m.

3 dealias=dealias,
4 stop_sim_time=stop_sim_time,
5 timestep=time_step,
6 timestepper=timestepper,
7 Lr=Lr,
8 scales=scale,
9 local=False,
10 save_every=save_every,
11 **constants)

7.6 Results

As in Section 6.5, we can view snapshots using the time_plot method and animations using
the animate method. In Figure 29, we see the evolution of the stream function ψ in Equation 28
over the course of a year. The vorticity ζ can be seen in Figure 30. More frames for various
parameters can be viewed in Section A. Note that the plot of vorticity ζ conveys more visual
information that the stream function ψ, as variations of ψ are small.

In the first two weeks in Figure 20, we see the Stommel term dominating, causing westward
intensification of the north and south gyres as discussed in Section 7.4. This is similar to the
expected behaviour in the third plot if Figure 19.

After the initial westward intensification, waves form as in weeks 2-4 of Figure 20. We see that
the Munk viscosity term ∇2ζ increases log-linearly until around week 10 as in Figure 21. This
confirms that for small time, we may ignore the Munk term.

Two vortices also form at week 4, and travel directly east along the centre of the domain. Since
the wind forcing is shifted slightly north, the vortices whip northwards as seen in week 8 of
Figure 22. At around week 14, eddy currents start peeling off from the main vortices.

Figure 23 shows a high resolution snapshot at week 36. The main jet reaches around a quarter
of the domain, and many eddies have been formed. There are small waves in the east, but most

40

Figure 22: Plots of vorticity ζ of the Stommel–Munk problem showing formation of eddy cur-
rents. With parameters Qshift = 1%, ν = 80m2 s, F = 0.1Nm−2 and H = 500m.

activity is still in the west. This behaviour is characteristic of the Gulf Stream as in Figure 1.

In years 2 and 3, similar behaviour is observed as in Figure 31. Over time, vortices are formed
and move around near the western border. The problem remains stable

The pixellation of the vorticity ζ in Figure 23 along the boundary ∂Ω may be a sign of numerical
instabilities caused by having a small ν and free slip boundary conditions. This does not seem
to have a large effect on the overall stability of the simulation with the current timestep and
simulation length. Increasing the number of basis functions should decrease this pixellation.

7.6.1 Performance

To run the Stommel–Munk problem for 1 year with a time step of 6 minutes, it takes Dedalus
approximately 2.5 hours of computation time on an Intel i5 processor and 8GB RAM with no
threading (as suggested in documentation [6]) and without utilising a GPU. Saving both the
stream function and vorticity every week (for a total of 52 snapshots) at a resolution of 768×768
takes approximately 500 MB of disc space. The scaling for both computation time and storage
space is approximately linear – a three year simulation takes 8 hours and 1.5GB of storage.

Possible speedups are discussed in Section 8.1.1.

7.6.2 Varying wind forcing

When Qshift = 0, the wind forcing is symmetric across the horizontal axis. In this case, we
expect ψ and ζ to be symmetric, as in Figure 32. The formed eddies are also symmetric as in
Figure 33. This is because all terms in Equation 28 have symmetry.

The value max |Q| = Fπ
ρ0LrH

determines the strength of wind forcing in the Stommel–Munk
problem (Equation 28). The parameters for the depth H and wind strength F can be freely
changed to alter max |Q|. Figure 24 shows the created jets at 19 weeks for different values of
max |Q| in the symmetric case (Qshift = 0). We see that halving max |Q| causes the jets to travel
less in those 19 weeks. This distance travelled approximately halves, thus their speed is halved
when max |Q| is halved.
In Figure 25 when wind forcing is large, we see the jets crashing into the eastern border. This
causes the formation of two vortices which destroy the jets and cause chaotic behaviour as in
Figure 34. This is not the behaviour of the Gulf Stream we want to model (Figure 1), but may
be characteristic of fluids in a smaller body of fluid or higher wind strengths.

7.6.3 Varying viscosity

Varying viscosity ν does not have much effect at the beginning since the viscosity forcing term
is negligible. We would expect that a higher viscosity makes it harder for eddies to form. In
Figure 26, we see more detailed eddies for ν = 40 compared with ν = 80. The lengths of the
two main vortex jets are approximately the same.

41

Figure 23: High resolution plot of the vorticity ζ of the Stommel–Munk problem, showing ocean-
like behaviour with parameters Qshift = 1%, ν = 80m2 s, F = 0.1Nm−2 and H = 500m.

Figure 24: Plot of vorticity ζ at 19 weeks for different wind forcing strengths max |Q| ∝ F
H with

Qshift = 0% and ν = 80. The jets move further for larger strengths.

Smaller values of ν would require more resolution through more basis functions. In Figure 27, we
see that we cannot resolve the eddies with Nr = Nφ = 256 number of basis functions. Increasing
the number of basis functions requires more computational time.

If ν is too large, Dedalus experiences numerically difficulties and the Munk viscosity term ex-
plodes. A further line of work would be to tune the parameters and step size to investigate a
large viscosity, and to compare these results to standard literature, where we expect the system
to settle in a steady state [31].

The finite element method can simulate the Stommel–Munk model with a large viscosity ν =
2000m2 s−1 [13]. The FEM simulation results in results similar to ours at small timesteps,
including westward intensification. The benefit of FEM is that the domain can be very complex
as a spacial mesh can cover any shape, for example the Mediterranean Sea in [13].

42

Figure 25: Plots of vorticity ζ for F
H = 2 × 10−4 at 24, 32 and 52 weeks with Qshift = 0 and

ν = 80. The jets crash into the eastern boundary and cause chaotic behaviour.

Figure 26: Plots of vorticity ζ for different values of viscosity ν with parameters Qshift = 1%,
F = 0.1Nm−2 and H = 500m. There are more eddies for the lower viscosity.

Figure 27: Plot of vorticity ζ for ν = 20m2 s showing unresolved details with parameters
Qshift = 1%, F = 0.05Nm−2 and H = 500m.

43

8 Conclusion

8.1 Future work

Obvious future work would include investigating the effects of a wider range of damping coeffi-
cients on the Stommel–Munk problem, i.e. making viscosity ν small and increasing the number
of basis functions; making ν large and decreasing timestep; and varying the drag r0. A longer
simulation time of 50 to 100 years would also be beneficial to examine long term behaviour. To
achieve the resolution and to replicate the behaviour of NASA’s Gulf Stream in Figure 1, we
need to modify our main parameters in Section 7.3.5 to a lower viscosity, higher resolution and
accuracy, and greater wind forcing; and increase the number of basis functions and decreasing
the timestep. Besides these tweaks, there are a few other extensions that could be implemented.

8.1.1 GPU

One of the biggest issues of simulating the Stommel–Munk model was computation time. Aside
from using better hardware or accessing a supercomputer, we could utilise parallel computing
and GPUs. This is not currently supported by Dedalus, but there have been plans to implement
such speedups2.

Another helpful feature would be to be able to fully save a state, instead of just snapshots. This
would help to stop and restart a simulation, as well as experimenting with a changing timestep
mid-simulation.

8.1.2 Conformal mappings

So far, all simulations have used a circular domain due to limitations of setting boundary condi-
tions in Dedalus. To reflect real-world domains, it may be more appropriate to model rectangular
patches of the ocean. Thus, we wish to map between a circle and a rectangular domain. We
wish for this map to be bijective, smooth, conformal (angle preserving) and boundary preserv-
ing. Although a smooth map is sufficient, conformal mappings can lead to nicer mathematics.
Without loss of generality, we can consider circle to square to circle maps, as a suitable map
from a square to a rectangle is stretching.

Figure 28: The elliptical grid mapping as in [12].

2See the discussion in https://groups.google.com/g/dedalus-dev/c/rj2gK1VMjx8.

44

https://groups.google.com/g/dedalus-dev/c/rj2gK1VMjx8

The review paper by Fong [12] presents the Schwarz-Chrisoffel conformal mapping. They also
suggest the elliptical grid mapping (which utilises trigonometric relations to convert between
Cartesian and polar) which is not conformal, but is an easy to implement map as in Figure 28.
The elliptical grid map keeps the radial component fairly even, but distorts angles and stretches
the boundaries causing a fish-eye effect [12].

Given a PDE on a square, we apply the change of coordinates arising from our chosen map.
To resolve issues with the collocation grid, we may need to evaluate fields at the preimage of
Dedalus’s circular grid points. This results in a PDE on a circular domain, and we may apply
boundary conditions on the whole boundary ∂Ω as in Section 4. Dedalus can then work with
this PDE and the result can be mapped back to the square.

8.1.3 Multilayer models

In our formulation of the Stommel–Munk model (Section 7), we assumed a think layer of ocean
of constant depth H. This is called a rigid lid approximation. But, the ocean is not two-
dimensional. Although we assume a shallow water system, in reality, there is mixing between
different water depths, and the height of water may change. If we two shallow water models
together, we can model more complex behaviour [31].

To correctly implement the boundary of the layers, we introduce the deformation radius LD =√
gH
f , which depends on the layer depth H, Coriolis parameter f and perceived gravitational

acceleration g (called reduced gravity) [31]. Features with a length greater than the deformation
radius experience rotational effects. In our formulation of the Stommel–Munk problem, we took
LD = ∞, which is called the short wave limit, where dispersion of water happens as in a non-
rotating frame [31]. A finite deformation radius is added to the vorticity equation (Equation 7.2)
by adding − 1

L2
D
ψ to get the shallow water quasi-geostrophic potential vorticity [31]

Dt

(
∇2ψ + f − 1

L2
D

ψ

)
= 0. (32)

For a two layer model with depths H1 and H2, we have two stream functions ψ1 and ψ2 satis-
fying a modified Equation 32 depending on different deformation radii. The modified vorticity
equations involve interaction terms between ψ1 and ψ2 via the deformation radius term as in
[31, Equation 5.85]. Since the interface between the two layers experience both gravity from
above, and buoyancy from below, we must account for reduced gravity in LD.

If we continue stacking layers, in the limit, each layer will have an infinitesimal thickness. This
represents continuous stratification [31].

8.2 Final remarks

In this dissertation, we have defined spectral methods for solving a PDE and have demonstrated
its core ideas by solving a Poisson equation on a box in Section 3 using basis recombination and
the Galerkin method. Dedalus is the computational Python package used for spectral methods,
and we have demonstrated Dedalus’ use on the same Poisson equation example using the tau
method, which is a modification of the Galerkin method that allows for boundary conditions.
We found that spectral methods solve this toy example well and that only around 20 basis
functions are needed to achieve machine precision. This results in a much smaller matrix than
finite difference, which would require a grid spacing of ∆x = 1

4×105
to achieve a similar precision.

This experiment suggests that spectral methods could be better than finite difference in terms
of accuracy as long as we have a sufficiently regular domain (namely, a circle or rectangle).

In order to impose boundary conditions over the whole boundary, we moved to a circular domain
in Section 4. We implemented a class that can be modified to solve different PDEs. The precision
was found to be similar to Section 3 for the Poisson equation with a Bessel solution. We found
that Nφ = 8 and Nr = 14 were sufficient for machine precision. The Bessel function would deem

45

itself useful later as we needed a smooth nonzero function to initialise the main Stommel–Munk
problem.

After exploring the mathematical theory and Dedalus implementation of time-dependent PDEs
in Section 5, we solved an advection equation with a solid body rotation solution in Section 6. A
Python class was created to implement this problem in Dedalus so that general problems can be
easily created. Comparing different timesteppers, we found that the third order method SBDF3
had the lowest errors. This was the timestepper used for our main problem.

Using all the theory and examples on solving PDEs spectrally, we derived our main model –
the Stommel–Munk problem in Section 7. This is a simplified model of the ocean, taking into
account the Coriolis effect, wind forcing, linear drag and viscosity. Using free slip boundary
conditions, we implemented this model in Dedalus with concrete parameter choices.

At the beginning of the simulation, the Stommel–Munk problem can be reduced to the Stommel
problem, and westward intensification of a north gyre and a south gyre is observed. As the
Munk term grows, waves start forming to the east of these shrinking gyres. These gyres then
formed two vortices that travelled along the horizontal axis and emitted eddy currents as in
Figure 23.

Our results were similar to that of literature, and we observed ocean-like behaviour given a
low viscosity. We also found that a non-symmetric wind forcing was essential to achieve non-
symmetric results. The best results used the following parameters: a small northwards shift
Qshift = 1% to break symmetry; a small viscosity ν = 80m2 s for the formation of eddy currents;
and wind forcing strength F = 0.1Nm−2 and water depth H = 500m to give a reasonable wind
effect.

Overall, the spectral method is a good alternative to the traditional finite difference and finite
element methods, as it offers better accuracies, yields smooth results, and is not reliant on a
grid in the spacial dimensions. When implemented in Dedalus, spectral methods can reliably
model complicated behaviour, such as the Stommel–Munk model of the ocean resembling the
Gulf Stream.

46

References

[1] T. J. Ahrens, editor. Global earth physics: a handbook of physical constants.
Number 1 in AGU reference shelf. American Geophysical Union, Washington, D.C, 1995.

[2] N. H. Asmar. Partial differential equations with Fourier series and boundary
value problems. Pearson Prentice Hall, Upper Saddle River, N. j, 2nd ed edition, 2005.

[3] BIPM. Le Système international d’unités / The International System of Units
(‘The SI Brochure’). Bureau international des poids et mesures, ninth edition, 2019.

[4] J. P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[5] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown. Dedalus: A Flexible
Framework for Numerical Simulations with Spectral Methods. Physical Review Re-
search, 2(2):023068, Apr. 2020.

[6] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown. Dedalus project
documentation, 2022. Accessed: 30 July 2023.

[7] I. P. O. C. Change. Climate change 2007: The physical science basis. Agenda, 6(07):333,
2007.

[8] B. Crowell. Conceptual Physics. Fullerton College, Aug. 2020.

[9] B. N. Datta. Numerical linear algebra and applications. Society for Industrial and
Applied Mathematics, Philadelphia, 2nd ed edition, 2010.

[10] P. Ditlevsen and S. Ditlevsen. Warning of a forthcoming collapse of the Atlantic meridional
overturning circulation. Nature Communications, 14(1):4254, July 2023.

[11] D. Erdenesanaa. June Was Earth’s Hottest on Record. August May Bring More of the
Same. The New York times, July 2023.

[12] C. Fong. Mappings for Squaring the Circular Disc. Seoul ICM, 2014.

[13] E. L. Foster, T. Iliescu, and Z. Wang. A Finite element discretization of the streamfunc-
tion formulation of the stationary quasi-geostrophic equations of the ocean. Computer
Methods in Applied Mechanics and Engineering, 261-262:105–117, July 2013.

[14] T. Gowers, J. Barrow-Green, and I. Leader. The Princeton companion to mathemat-
ics. Princeton University Press, 2010.

[15] N. J. Higham and M. R. Dennis, editors. The Princeton companion to applied math-
ematics. Princeton University Press, Princeton, 2015.

[16] L. Kemp, C. Xu, J. Depledge, K. L. Ebi, G. Gibbins, T. A. Kohler, J. Rockström, M. Schef-
fer, H. J. Schellnhuber, W. Steffen, and T. M. Lenton. Climate Endgame: Exploring catas-
trophic climate change scenarios. Proceedings of the National Academy of Sciences,
119(34):e2108146119, Aug. 2022.

[17] S. W. Key and R. D. Krieg. Comparison of Finite-Element and Finite-Difference Methods.
In Numerical and Computer Methods in Structural Mechanics, pages 337–352.
Elsevier, 1973.

[18] N. Kukreja, M. Louboutin, F. Vieira, F. Luporini, M. Lange, and G. Gorman. Devito: Auto-
mated Fast Finite Difference Computation. In 2016 Sixth International Workshop on
Domain-Specific Languages and High-Level Frameworks for High Performance
Computing (WOLFHPC), pages 11–19, Salt Lake, UT, USA, Nov. 2016. IEEE.

47

[19] R. J. LeVeque. Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2007.

[20] D. Li, editor. Encyclopedia of Microfluidics and Nanofluidics. Springer US, Boston,
MA, 2008.

[21] P. Livermore. A compendium of Galerkin orthogonal polynomials. Scripps Institution
of Oceanography Technical Report, 2009.

[22] D. L. Logan. A first course in the finite element method. Thomson, United States,
4th ed edition, 2007.

[23] W. H. Munk. On the wind-driven ocean circulation. Journal of Atmospheric Sciences,
7(2):80–93, 1950.

[24] J. Niesen. Stability region for BDF1.svg. Wikimedia Commons, the free media
repository, 2020. Accessed: 02 Aug. 2023.

[25] E. L. Ortiz. The Tau Method. SIAM Journal on Numerical Analysis, 6(3):480–492,
1969.

[26] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T.
Bercea, G. R. Markall, and P. H. J. Kelly. Firedrake: Automating the Finite Element
Method by Composing Abstractions. ACM Transactions on Mathematical Software,
43(3):1–27, Sept. 2017.

[27] G. Rawitscher, V. Dos Santos Filho, and T. C. Peixoto. An Introductory Guide to
Computational Methods for the Solution of Physics Problems: With Emphasis
on Spectral Methods. Springer International Publishing, Cham, 2018.

[28] M. W. Scroggs, J. S. Dokken, C. N. Richardson, and G. N. Wells. Construction of Arbitrary
Order Finite Element Degree-of-Freedom Maps on Polygonal and Polyhedral Cell Meshes.
ACM Transactions on Mathematical Software, 48(2):1–23, June 2022.

[29] G. Shirah, H. Mitchell, V. Weeks, D. Menemenlis, and H. Zhang. Perpetual Ocean.
NASA/Goddard Space Flight Center Scientific Visualization Studio, Aug. 2011.

[30] H. Stommel. The westward intensification of wind-driven ocean currents. Transactions,
American Geophysical Union, 29(2):202, 1948.

[31] G. K. Vallis. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and
Large-Scale Circulation. Cambridge University Press, 2 edition, June 2017.

[32] G. M. Vasil, K. J. Burns, D. Lecoanet, S. Olver, B. P. Brown, and J. S. Oishi. Tensor calculus
in polar coordinates using Jacobi polynomials. Journal of Computational Physics,
325:53–73, Nov. 2016.

[33] D. Wang and S. J. Ruuth. Variable step-size implicit-explicit linear multistep methods for
time-dependent partial differential equations. Journal of Computational Mathematics,
pages 838–855, 2008.

[34] R. Zhong. Where major wildfires have struck around the world so far in 2023. The New
York times, Aug. 2023.

[35] I. S. Zonn, A. G. Kostianoy, and A. V. Semenov. Gulf Stream. In The Western Arctic
Seas Encyclopedia. Springer International Publishing, Cham, 2017.

48

Appendices

A Extra figures

Figure 29: Plots of the Stommel–Munk model stream function at 1, 2, 5, 20, 31, 52 weeks
with parameters Qshift = 1%, ν = 80m2 s, F = 0.1Nm−2 and H = 500m as explained in
Section 7.3.5. Westward intensification of the north and south gyres is observed in the first two
weeks. Then waves start appearing to the east of the gyres and vortices start to form and travel
along the horizontal axis.

49

Figure 30: Plots of the Stommel–Munk model vorticity at 1, 5, 15, 20, 31, 52 weeks with pa-
rameters Qshift = 1%, ν = 80m2 s, F = 0.1Nm−2 and H = 500m as explained in Section 7.3.5.
We see vortices travelling along the horizontal axis, and eddies being emitted. Most activity is
concentrated in the west.

50

Figure 31: Plots of the Stommel–Munk model vorticity in the second and third years with pa-
rameters Qshift = 1%, ν = 80m2 s, F = 0.1Nm−2 and H = 500m as explained in Section 7.3.5.
Over three years, eddies continue to form in the west. The problem remains stable.

51

Figure 32: Plots of the symmetric Stommel–Munk model vorticity at 1, 5, 15, 20, 31, 52 weeks
with parameters Qshift = 0%, ν = 80m2 s, F = 0.1Nm−2 and H = 103m. The central jets
remain true to the horizontal, and the formed eddies are symmetric.

52

Figure 33: High resolution plot of eddies in the symmetric Stommel–Munk problem with pa-
rameters Qshift = 0%, ν = 80m2 s, F = 0.1Nm−2 and H = 103m. The eddies are symmetric
and peel off the main jet smoothly.

Figure 34: High resolution plot of vorticity showing the collapse of the main vortex jets a few
weeks after they hit the eastern boundary in the Stommel–Munk problem with parameters
Qshift = 0%, ν = 80m2 s, F = 0.1Nm−2 and H = 500m.

53

B Nomenclature

B.1 Variable naming conventions

Symbol Description

t Time
r, φ Radial and azimuthal components of polar coordinates
x, y Components of Cartesian coordinates
Ω Open, bounded and connected domain
∂Ω Boundary of domain
∆t Timestep
ψ Stream function
ζ Vorticity

B.2 Operators and functions

Symbol Description Definition

∂x Partial derivative with respect to x
f ′ Total derivative of f

∇ Gradient
(
∂x ∂y

)T
∇⊥ Orthogonal gradient

(
−∂y ∂x

)T
∇· Divergence ∂x + ∂y
∇2 Laplacian ∂xx + ∂yy = ∂rr +

1
r∂r +

1
r2
∂φφ

Dt Material derivative ∂t +∇⊥ψ · ∇
δ(x) Kronecker delta δ(x) = 0 if x ̸= 0 and δ(0) = 1
Tn(x) n-th Chebyshev polynomial cos(n arccos(x)) for n ∈ Z≥0

Un(x) Chebyshev polynomial of the second kind Un−1(x) =
1
nT

′
n(x)

Jn n-th Bessel function Equation 15

B.3 Parameters

The parameter values are the ones used in the main Stommel–Munk simulation as discussed in
Section 7.3.5.

B.3.1 Constant parameters

Symbol Description Value used in simulation

Lr Radius of modelled ocean 2× 106m
β Rossby parameter 2× 10−11m−1 s−1

r0 Drag damping 2× 10−7N
ρ0 Density of water 103 kgm−3

B.3.2 Tweaked parameters

Symbol Description Value used in main simulation

ν Viscosity damping 80m2 s
H Depth of modelled ocean 500m
F Wind forcing strength 0.1Nm−2

Qshift Wind forcing vertical shift 1%

54

B.3.3 Simulation parameters

Symbol Description Value used in simulation

T Simulation time 1 year
∆t Simulation timestep 6 minutes

Nr, Nφ Number of basis functions 256, 256
Timestepper SBDF3
Snapshot period Every week

s Dealiasing scale 2
Mesh scale 3

55

C Code

C.1 Using Dedalus on Windows

1. Install WSL https://learn.microsoft.com/en-us/windows/wsl/install.

2. Access Linux files in Windows path \\wsl.localhost\.

3. Open WSL using wsl.

4. Install Conda https://github.com/conda-forge/miniforge.

5. Install Dedalus v3 https://dedalus-project.readthedocs.io/en/latest/
pages/installation.html [6].

6. Install other packages via Conda (e.g. jupyter and matplotlib).

7. Run jupyter notebook and open link in any browser (back in Windows).

8. Make sure you are running commands in the right Conda environment (check environment
name via conda info --envs then activate using conda activate dedalus3).

9. Use wsl --shutdown to shutdown and stop RAM usage. Alternatively, to force shut-
down use taskkill /F /im wslservice.exe.

C.2 Packages used

1 # Calculations
2 import numpy as np
3 import dedalus
4 import dedalus.public as d3
5 import scipy.special as sc
6
7 # General
8 import logging
9 import time

10 import warnings
11 import copy
12 from functools import partial
13
14 # File handling
15 import h5py
16 import json
17
18 # Plotting
19 import matplotlib.pyplot as plt
20 import matplotlib.animation
21 from IPython.display import HTML
22 from IPython.display import clear_output
23
24 matplotlib.rcParams.update({'font.size': 16})
25 print('Dedalus v', dedalus.__version__)
26 logger = logging.getLogger(__name__)

The versions of these packages are as follows.

� dedalus 3.0.0a

� numpy 1.24.3

� matplotlib 3.7.1

� scipy 1.10.1

� json 2.0.9

� logging 0.5.1.2

� h5py 3.8.0

� IPython 8.14.0

56

https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/conda-forge/miniforge
https://dedalus-project.readthedocs.io/en/latest/pages/installation.html
https://dedalus-project.readthedocs.io/en/latest/pages/installation.html

C.3 Helper functions

1 def im_plot(x_vals, y_vals, z, ax=None, filename=None, title=None, cax=None):
2 ''' Make plot of z(x_vals, y_vals) from input arrays.
3 Inputs: phi = azimuth (radians)
4 r = radius
5 z = function value as array (ensure dimension is phi-by-r)
6 ax = ax to plot on
7 title = plot title (=filename if title=None)
8 cax = colourbar axis (False=disable)'''
9

10 if ax is None:
11 ax_set = False
12 fig = plt.figure(figsize=(5, 5))
13 ax = fig.gca()
14 else:
15 ax_set = True
16
17 if title is not None:
18 ax.title.set_text(title)
19 else:
20 ax.title.set_text(filename)
21
22 with warnings.catch_warnings():
23 warnings.filterwarnings('ignore', message=("The input coordinates"))
24 im = ax.pcolormesh(x_vals, y_vals, z, edgecolors='face')
25
26 ax.set_aspect('equal')
27
28 if cax is None:
29 plt.colorbar(im, ax=ax)
30 elif cax is False:
31 pass
32 else:
33 plt.colorbar(im, cax=cax)
34
35 if ax_set is False:
36 if filename is not None:
37 fig.savefig(filename+'.png', dpi=fig.dpi, bbox_inches='tight')
38 plt.show()
39 return im
40
41
42 def polar_plot(phi, r, z, ax=None, filename=None, title=None, cax=None):
43 ''' Make polar plot of z(phi,r) from input arrays.
44 Inputs: phi = azimuth (radians)
45 r = radius
46 z = function value as array (ensure dimension is phi-by-r)
47 ax = ax to plot on
48 title = plot title (=filename if title=None)
49 cax = colourbar axis (False=disable)'''
50
51 phi_mesh, r_mesh = np.meshgrid(phi, r)
52 x_vals = r_mesh * np.cos(phi_mesh)
53 y_vals = r_mesh * np.sin(phi_mesh)
54
55 im = im_plot(x_vals, y_vals, z, ax=ax,
56 filename=filename, title=title, cax=cax)
57 return im
58
59
60 def animate(plot_func, t_list, pause=0):
61 '''Make animation based on a plot function and time list'''
62 for k, t in enumerate(t_list):
63 clear_output(wait=True)
64 plot_func(k, t)
65 plt.pause(pause)
66 plt.show()
67
68
69 def func_on_mesh(psi, phi, r):
70 '''Return psi(phi, r) on meshed grid'''
71 phi_mesh, r_mesh = np.meshgrid(phi, r)
72 return psi(phi_mesh, r_mesh)

57

C.4 Poisson on a square

1 def lap_square(Nx, Ny):
2 '''
3 Solve Laplace Equation on a square
4 lap(u) = q;
5 u(x=0) = u(x=1) = 0, BC.
6 u(y=0) = u(y=1), periodic BC
7
8 n = num basis fns
9 '''

10
11 # Bases
12 coords = d3.CartesianCoordinates('x', 'y')
13 dist = d3.Distributor(coords, dtype=np.float64)
14 xbasis = d3.RealFourier(coords['x'], size=Nx, bounds=(-1, 1))
15 ybasis = d3.Chebyshev(coords['y'], size=Ny, bounds=(-1, 1))
16
17 # Fields
18 psi = dist.Field(name='psi', bases=(xbasis, ybasis))
19
20 # Forcing
21 x, y = dist.local_grids(xbasis, ybasis)
22 f = dist.Field(bases=(xbasis, ybasis))
23 f['g'] = -2*np.pi**2 * np.sin(np.pi*x) * np.sin(np.pi*y)
24
25 # Tau method
26 tau_0 = dist.Field(name='tau_0', bases=xbasis)
27 tau_1 = dist.Field(name='tau_1', bases=xbasis)
28
29 def lift(tau, i):
30 lift_basis = ybasis.derivative_basis()
31 return d3.Lift(tau, lift_basis, i)
32
33 # Problem
34 problem = d3.LBVP([psi, tau_0, tau_1], namespace=locals())
35 problem.add_equation("lap(psi) + lift(tau_0, -1) + lift(tau_1,-2) = f")
36 problem.add_equation("psi(y=-1) = 0")
37 problem.add_equation("psi(y=1) = 0")
38
39 # Solver
40 solver = problem.build_solver()
41 solver.solve()
42
43 # Gather global data
44 x = xbasis.global_grid()
45 y = ybasis.global_grid()
46 psi_g = psi.allgather_data('g')
47
48 clear_output(wait=True)
49
50 # Plots and errors ###
51
52 xx, yy = np.meshgrid(x, y)
53 actual = np.sin(np.pi * xx) * np.sin(np.pi * yy)
54 actual_field = dist.Field(bases=(xbasis, ybasis))
55 actual_field['g'] = actual.T
56
57 R = psi - actual_field
58
59 fig, axs = plt.subplots(1, 3, figsize=(20, 6))
60 im_plot(xx, yy, psi_g.T, ax=axs[0], title='Dedalus')
61 im_plot(xx, yy, actual, ax=axs[1], title='Actual')
62 im_plot(xx, yy, R.evaluate()['g'].T, ax=axs[2], title='Error')
63 fig.tight_layout()
64 plt.show()
65
66 filename = 'Poisson on square'
67 fig.savefig(filename+'.png', dpi=fig.dpi, bbox_inches='tight')
68
69 err = np.sqrt(d3.integ(R**2)).evaluate()['g']
70 print('Error:', err)
71 print('Machine eps:', np.finfo(np.float64).eps)
72 return err[0, 0]
73
74

58

75 lap_square(256, 256)

C.5 Basic polar solver

1 class DedalusSolver:
2 '''
3 Basic class for solver.
4
5 IMPORTANT: implement make_problem and
6 solve_problem in subclass.
7
8 Useful methods:
9 run = make_space + make_problem + solve_problem

10 (__init__ executes run once)
11 actual = set actual func
12 compute_error = graph overview of error for saved run
13 error_lists + error_plots = graph error for varying N
14 '''
15 def __init__(self, Nphi, Nr, Lr=1, *, dealias=1):
16 # Export vars
17 self.Nphi = Nphi
18 self.Nr = Nr
19 self.Lr = Lr
20 self.dealias = dealias
21
22 # Run
23 self.make_space()
24
25 def make_space(self):
26 '''Setup Dedalus basis and field'''
27 # Import vars
28 Nphi = self.Nphi
29 Nr = self. Nr
30 Lr = self.Lr
31 dealias = self.dealias
32
33 # Parameters
34 dtype = np.float64
35
36 # Bases
37 coords = d3.PolarCoordinates('phi', 'r')
38 dist = d3.Distributor(coords, dtype=dtype)
39 disk = d3.DiskBasis(coords, shape=(Nphi, Nr), radius=Lr,
40 dealias=dealias, dtype=dtype) # Circular domain
41 edge = disk.edge
42 phi, r = dist.local_grids(disk)
43
44 # Field
45 u = dist.Field(name='u', bases=disk)
46
47 # Export vars
48 self.coords = coords
49 self.dist = dist
50 self.disk = disk
51 self.edge = edge
52 self.u = u
53 self.phi = phi
54 self.r = r
55
56 def run(self, local=True, save_every=None, save_name=None):
57 '''Fully run problem from scratch'''
58 self.make_space()
59 self.make_problem()
60
61 time_0 = time.perf_counter() # Start timer
62 self.solve_problem(local=local, save_every=save_every, save_name=save_name)
63 time_tot = time.perf_counter() - time_0
64
65 self.time = time_tot
66
67 def actual(self, actual_func):
68 '''Return array of values of actual function on
69 input of actual_func = type func'''
70 # Import vars
71 phi = self.phi

59

72 r = self.r
73 Lr = self.Lr
74
75 self.actual_func = actual_func
76 scaled_func = partial(actual_func, Lr=Lr)
77 return func_on_mesh(scaled_func, phi, r)
78
79 def plot(self, z, ax=None, filename=None, title=None, cax=None):
80 '''Generic plot via polar_plot. Input z'''
81 # Import vars
82 phi = self.phi
83 r = self.r
84 polar_plot(phi, r, z, ax=ax, filename=filename, title=title, cax=cax)
85
86 def plot_result(self, ax=None, filename=None, title=None, cax=None):
87 '''Plot of results using polar_plot'''
88 z = self.ug.T
89 self.plot(z, ax, filename, title, cax)
90
91 def plot_actual(self, ax=None, filename=None, title=None, cax=None):
92 '''Plot of actual using polar_plot'''
93 z = self.actual(self.actual_func)
94 self.plot(z, ax, filename, title, cax)
95
96 def integral_error(self):
97 '''Compute sqrt(int(computed-actual)ˆ2)'''
98 # Import vars
99 disk = self.disk

100 actual_func = self.actual_func
101 phi = self.phi
102 r = self.r
103 u = self.u # field
104 dist = self.dist
105
106 # Actual field
107 actual = dist.Field(name='actual', bases=disk)
108 actual['g'] = actual_func(phi, r)
109
110 # Compute errors
111 error = np.sqrt(d3.integ((u - actual)**2)).evaluate()['g']
112 return error[0, 0]
113
114 def compute_error(self, make_plots=True, filename=None):
115 '''Plots and computes error of given functions by
116 comparing with actual_func on mesh. Assumes problem
117 is presolved.'''
118 # Import vars
119 Nr = self.Nr
120 Nphi = self.Nphi
121 ug = self.ug
122 actual = self.actual(self.actual_func)
123
124 errors = actual - ug.T
125 weighted_norm = self.integral_error()
126
127 if make_plots is True:
128 print('Error:', weighted_norm)
129 # Plotting
130 fig, axs = plt.subplots(1, 3, figsize=(20, 6))
131
132 for ax in axs:
133 ax.ticklabel_format(style='sci')
134
135 self.plot_result(ax=axs[0], title='Dedalus')
136 self.plot_actual(ax=axs[1], title='Actual')
137 self.plot(errors, ax=axs[2], title='Error')
138 plt.tight_layout()
139 plt.show()
140
141 if filename is not None:
142 fig.savefig(filename+'.png', dpi=fig.dpi,
143 bbox_inches='tight')
144
145 # Export vars
146 self.error = weighted_norm
147

60

148 def error_lists(self, Nphi_list, Nr_list):
149 '''Solve problem with various different Nphi and Nr
150 (input as numpy lists, nb needs Nphi = 0 mod 4).
151 Outputs lists of errors and times.'''
152 # Import vars
153 Nphi = self.Nphi
154 Nr = self.Nr
155 loop_solver = copy.copy(self)
156
157 # Loop Nr
158 loop_solver.Nphi = Nphi
159 Nr_error_list = []
160 Nr_times_list = []
161
162 for Nr_loop in Nr_list:
163 print('Nr =', Nr_loop)
164
165 loop_solver.Nr = Nr_loop
166 loop_solver.run()
167 loop_solver.compute_error(make_plots=False)
168
169 Nr_error_list.append(loop_solver.error)
170 Nr_times_list.append(loop_solver.time)
171
172 # Loop Nphi
173 loop_solver.Nr = Nr
174 Nphi_error_list = []
175 Nphi_times_list = []
176
177 for Nphi_loop in Nphi_list:
178 print('Nphi =', Nphi_loop)
179
180 loop_solver.Nphi = Nphi_loop
181 loop_solver.run()
182 loop_solver.compute_error(make_plots=False)
183
184 Nphi_error_list.append(loop_solver.error)
185 Nphi_times_list.append(loop_solver.time)
186
187 print('Done!')
188
189 # Export vars
190 self.Nr_list = Nr_list
191 self.Nphi_list = Nphi_list
192 self.Nr_error_list = Nr_error_list
193 self.Nr_times_list = Nr_times_list
194 self.Nphi_error_list = Nphi_error_list
195 self.Nphi_times_list = Nphi_times_list
196
197 def error_plots(self, truncs=[20, 20]):
198 '''Plots error and time lists from self.error_lists
199 trunc = point to truncate best fit'''
200 # Import vars
201 Nr_list = self.Nr_list
202 Nphi_list = self.Nphi_list
203 Nr_error_list = self.Nr_error_list
204 Nr_times_list = self.Nr_times_list
205 Nphi_error_list = self.Nphi_error_list
206 Nphi_times_list = self.Nphi_times_list
207
208 fig, axs = plt.subplots(1, 2, figsize=(12, 4))
209
210 ax = axs[0]
211 ax.plot(Nr_list, Nr_error_list, '-o')
212 ax.set(xlabel="Number of basis functions N_r",
213 ylabel="Normed errors")
214 ax.set_yscale('log')
215 ax.set_title(f"Varying N_r, $N_\phi={self.Nphi}$")
216
217 trunc = truncs[0]
218 coeffs = np.polyfit(Nr_list[:trunc], np.log(Nr_error_list[:trunc]), 1)
219 poly = str(np.poly1d(coeffs, variable=r'N_r'))[2:]
220 ax.plot(Nr_list[:trunc], np.exp(np.poly1d(coeffs)(Nr_list[:trunc])),
221 label=f'exp({poly})')
222 ax.legend()
223

61

224 ax = axs[1]
225 ax.plot(Nphi_list, Nphi_error_list, '-o')
226 ax.set(xlabel=r"Number of basis functions N_ϕ",
227 ylabel="Normed errors")
228 ax.set_yscale('log')
229 ax.set_title(f"Varying N_ϕ, $N_r={self.Nr}$")
230
231 trunc = truncs[1]
232 if trunc is not None:
233 coeffs = np.polyfit(Nphi_list[:trunc],
234 np.log(Nphi_error_list[:trunc]), 1)
235 poly = str(np.poly1d(coeffs, variable=r'N_ϕ'))[2:]
236 ax.plot(Nphi_list[:trunc],
237 np.exp(np.poly1d(coeffs)(Nphi_list[:trunc])),
238 label=f'exp({poly})')
239 ax.legend()
240
241 fig.tight_layout()
242 plt.show()

C.6 Poisson on a circle

1 class Poisson_Circ(DedalusSolver):
2 '''
3 Subclass of `DedalusSolver`. Adds methods
4 `make_problem` and `solve_problem`.
5
6 Solve Laplace Equation on Unit Circle
7 lap(u) - u/Ldˆ2 = q;
8 u(r=1) = 0, BC.
9

10 Input:
11 Nphi, Nr = Grid spacing
12 q_func(phi, r, Ld) = q
13
14 'ug' outputs np.array. 'u' outputs dedalus object
15
16 Returns phi, r, u
17 '''
18 def __init__(self, Nphi, Nr, q_func, *, Lr=1, dealias=1):
19 # Export vars
20 self.Nphi = Nphi
21 self.Nr = Nr
22 self.q_func = q_func
23 self.Ld = np.inf
24 self.Lr = Lr
25 self.dealias = dealias
26
27 # Run
28 self.run()
29
30 def make_problem(self):
31 '''Make problem with Laplace equation'''
32 # Import vars
33 q_func = self.q_func
34 Ld = self.Ld
35 dist = self.dist
36 disk = self.disk
37 edge = self.edge
38 coords = self.coords
39 u = self.u
40 Lr = self.Lr
41
42 # Forcing
43 phi, r = dist.local_grids(disk)
44 q = dist.Field(bases=disk)
45 q['g'] = q_func(phi, r, Lr=Lr) # as input
46
47 # Tau method
48 tau_u = dist.Field(name='tau_u', bases=edge)
49
50 def lift(A):
51 lift_basis = disk.derivative_basis()
52 return d3.Lift(A, lift_basis, -1)
53

62

54 # Problem
55 problem = d3.LBVP([u, tau_u], namespace=locals())
56 problem.add_equation("lap(u) - u/(Ld**2) + lift(tau_u) = q")
57 problem.add_equation("u(r=Lr) = 0")
58
59 # Export vars
60 self.problem = problem
61
62 def solve_problem(self, local=None, save_every=None, save_name=None):
63 '''Solve Laplace equation'''
64 # Import vars
65 dist = self.dist
66 disk = self.disk
67 problem = self.problem
68 u = self.u
69
70 # Solver
71 solver = problem.build_solver()
72 solver.solve()
73
74 # Gather global data
75 phi, r = dist.local_grids(disk)
76 ug = u.allgather_data('g')
77 print('Done!')
78
79 clear_output(wait=True)
80
81 # Export vars
82 self.u = u
83 self.ug = ug
84 self.phi = phi
85 self.r = r

C.6.1 Bessel solution

1 def bessel_q(phi, r, n=3, Lr=1):
2 '''q arrising from bessel'''
3 r = r/Lr # Scale r
4 a = sc.jn_zeros(n, 1)[0]
5 q = (((a**2)/4) * np.sin(n*phi)) \
6 * (sc.jn(n-2, a*r) - 2*sc.jn(n, a*r) + sc.jn(n+2, a*r)) \
7 + ((a/(2*r)) * np.sin(n*phi)) * (sc.jn(n-1, a*r) - sc.jn(n+1, a*r)) \
8 - (((n**2)/(r**2)) * np.sin(n*phi)) * sc.jn(n, a*r)
9 return q/Lr**2

10
11
12 def bessel(phi, r, n, Lr=1):
13 '''Return Bessel values'''
14 r = r/Lr # Scale r
15 a = sc.jn_zeros(n, 1)[0]
16 z = np.sin(n*phi) * sc.jn(n, a*r)
17 return z
18
19
20 # Params
21 n = 3 # Bessel order
22 Nphi, Nr = 2**8, 2**8
23 Lr = 1
24
25 bessel_lap = Poisson_Circ(Nphi, Nr, partial(bessel_q, n=n), Lr=Lr)
26 bessel_lap.actual(partial(bessel, n=n))
27 bessel_lap.compute_error()

1 bessel_lap.Nr, bessel_lap.Nphi = 14, 8
2
3 Nr_list = np.arange(4, 20, 1, dtype=int)
4 Nphi_list = np.arange(4, 24, 4, dtype=int)
5
6 bessel_lap.error_lists(Nphi_list, Nr_list)
7 bessel_lap.error_plots([11, 2]) # Truncate line of best fit

63

C.7 Time-dependent polar solver

1 class time_PDE(DedalusSolver):
2 '''
3 Subclass of `DedalusSolver`.
4
5 IMPORTANT: create make_problem manually in subclass.
6
7 Useful methods:
8 time_plot = plot PDE at specific times
9 animate = create video over all time

10 solve_problem
11 '''
12 def __init__(self, Nphi, Nr, initial_func, *,
13 Lr=1, dealias=2,
14 timestepper=d3.SBDF2, stop_sim_time=np.pi/2, timestep=0.1,
15 local=True, save_every=1, save_name=None, scales=1,
16 import_previous=False, variable_name=None, **kwargs):
17 # Export vars
18 self.Nphi = Nphi
19 self.Nr = Nr
20 self.initial_func = initial_func
21 self.Lr = Lr
22 self.dealias = dealias
23 self.timestepper = timestepper
24 self.stop_sim_time = stop_sim_time
25 self.timestep = timestep
26 self.local = local
27 self.save_every = save_every
28 self.save_name = save_name
29 self.import_previous = import_previous
30 self.variable_name = variable_name
31 self.scales = scales
32 self.__dict__.update(kwargs)
33
34 # Run
35 if import_previous is False:
36 self.run(local=local, save_every=save_every, save_name=save_name)
37 else:
38 with open(f'{save_name}/params.json') as json_file:
39 data = json.load(json_file)
40 self.__dict__.update(data)
41
42 def solve_problem(self, *, local=True, save_every=None, save_name=None):
43 '''Solve PDE with given timestepper
44 local = True : outputs to variable q_list
45 local = False: outputs to file=filename (default classname + time)
46 sim_dt: output every sim_dt time
47 '''
48 # Import vars
49 dist = self.dist
50 disk = self.disk
51 problem = self.problem
52 q = self.q
53 t = self.t
54 timestep = self.timestep
55 stop_sim_time = self.stop_sim_time
56 save_every = self.save_every
57
58 time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
59 if save_name is None:
60 save_name = 'Snapshots ' + time_str + ' ' + self.__class__.__name__
61
62 sim_dt = save_every * timestep
63
64 # Solver
65 solver = problem.build_solver(self.timestepper)
66 solver.stop_sim_time = stop_sim_time
67
68 # Main loop (external)
69 if local is False:
70 snapshots = solver.evaluator.add_file_handler(save_name,
71 sim_dt=sim_dt)
72 snapshots.add_tasks(solver.state, layout='g', scales=self.scales)
73
74 while solver.proceed:

64

75 solver.step(timestep)
76 if solver.iteration % 100 == 0:
77 logger.info('Iteration=%i, Time=%e, dt=%e'
78 % (solver.iteration, solver.sim_time,
79 timestep))
80 end_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
81 logger.info('Done!')
82 clear_output(wait=True)
83
84 # Export vars
85 self.sim_ind_list = range(int(stop_sim_time // sim_dt))
86 self.save_name = save_name
87 self.execution_time = time_str
88 self.execution_end_time = end_time
89 self.import_previous = True
90
91 with open(f'{save_name}/params.json', 'w') as file:
92 json.dump(self.__dict__, file, default=str)
93
94 # Main loop (local)
95 if local is True:
96 q.change_scales(scales=self.scales)
97 q_list = [np.copy(q['g'])]
98 t_list = [solver.sim_time]
99 while solver.proceed:

100 solver.step(timestep)
101 if solver.iteration % 100 == 0:
102 logger.info('Iteration=%i, Time=%e, dt=%e'
103 % (solver.iteration, solver.sim_time,
104 timestep))
105 if solver.iteration % save_every == 0:
106 q.change_scales(scales=self.scales)
107 q_list.append(np.copy(q['g']))
108 t_list.append(solver.sim_time)
109
110 logger.info('Done!')
111 clear_output(wait=True)
112
113 # Export vars
114 self.sim_ind_list = range(int(stop_sim_time // sim_dt))
115 self.q_list = q_list
116 self.t_list = t_list
117
118 def time_plot(self, plot_t_list=[0, .5, 1], filename=None):
119 '''Plots PDE over time. `plot_t_list` is list
120 of normalised time in [0,1] to be plotted.'''
121 if self.import_previous is True:
122 var_name = self.variable_name
123 time_plot_file(self.save_name, plot_t_list=plot_t_list,
124 variable_name=var_name, filename=filename)
125 else:
126 # Import vars
127 Nr = self.Nr
128 Nphi = self.Nphi
129 q_list = self.q_list
130 t_list = self.t_list
131
132 # Plotting
133 plot_length = len(plot_t_list)
134 fig, axs = plt.subplots(1, plot_length, figsize=(20, 6))
135
136 for i, t in enumerate(plot_t_list):
137 t_ind = int(t * (len(t_list) - 1))
138 self.plot(q_list[t_ind].T, ax=axs[i],
139 title=f'Time = {t_list[t_ind]:.3}')
140 fig.tight_layout()
141 plt.show()
142
143 if filename is not None:
144 fig.savefig(filename+'.png', dpi=fig.dpi,
145 bbox_inches='tight')
146
147 def animate(self, frames=None):
148 '''Animate PDE over time with global animate function'''
149 if self.import_previous is True:
150 var_name = self.variable_name

65

151 animate_file(self.save_name, variable_name=var_name, frames=frames)
152 else:
153 q_list = self.q_list
154 t_list = self.t_list
155 t_steps = len(t_list)
156
157 if frames is None:
158 frames = range(t_steps)
159
160 def plot_func(k):
161 self.plot(q_list[k].T, ax=ax[0], title=
162 f'Time: {t_list[k]:.3f}', cax=ax[1])
163
164 fig, ax = plt.subplots(1, 3, width_ratios=[10, 1, 1],
165 figsize=(6, 5))
166 ax[2].axis('off')
167 ani2 = matplotlib.animation.FuncAnimation(fig, plot_func,
168 frames=frames)
169 plt.close()
170
171 video = HTML(ani2.to_jshtml())
172 display(video)

C.7.1 Writing to drive

We are storing data as float64 objects. These take 8 bytes each (this can be checked by running
np.float64(0.0).itemsize). With a collocation grid of 256 × 256, each snapshot takes over 0.5
MB. For long periods of time, the memory usage for the collection of all snapshots increases, and
it becomes unreasonable to store all values to RAM. Dedalus implements a file handler which
can regular write snapshots to HDF5 files [6]. If the attribute local is False, the snapshots will
not be saved in lists like above, but instead in HDF5 files using the following alternative solver
loop instead of Section 6.3.

1 snapshots = solver.evaluator.add_file_handler(save_name,
2 sim_dt=sim_dt)
3 snapshots.add_tasks(solver.state, layout='g', scales=self.scales)
4
5 while solver.proceed:
6 solver.step(timestep)
7 if solver.iteration % 100 == 0:
8 logger.info('Iteration=%i, Time=%e, dt=%e'
9 % (solver.iteration, solver.sim_time,

10 timestep))

We no longer need to manually save snapshots inside the loop. Instead solver.evaluator.

add_file_handler handles the saving of snapshots every sim_dt time automatically for us. The
method snapshots.add_tasks(solver.state) tells the file handler to save all fields in the snap-
shot. Dedalus creates a folder with name save_name, which within stores files with extension
_s1.h5. There are options to split the save into multiple different files by passing iter=10 into
solver.evaluator.add_file_handler (which stores 10 snapshots in each file) [6].

C.7.2 Reading from drive

1 def load_snapshot(save_name, file_num=1, index=0,
2 variable_name='q'):
3 with h5py.File(f"{save_name}/{save_name}_s{file_num}.h5",
4 mode='r') as f:
5 # Load dataset
6 q = f['tasks'][variable_name]
7 t_list = q.dims[0][0]
8 phi_list = q.dims[1][0]
9 r_list = q.dims[2][0]

10
11 return phi_list[:], r_list[:], q[index], t_list[index]

66

This function takes in a folder name save_name and file number (defaults to 1). It loads the snap-
shot of field variable_name with index given by index. This is done via f['tasks'][variable_name].
The coordinates φ and r and the time at the chosen index are also returned.

C.8 Solid body rotation

1 class rotation_PDE(time_PDE):
2 def make_problem(self):
3 '''Make PDE problem:
4 Advection Equation on Unit Circle
5 dt(psi) + 0.5 * gradperp(rˆ2) @ grad(psi) = 0;
6 where gradperp(.) = -skew(grad(.)) in d3'''
7 # Import vars
8 dist = self.dist
9 disk = self.disk

10 edge = self.edge
11 coords = self.coords
12 Lr = self.Lr
13
14 # Overwrite fields from make_space
15 psi = dist.Field(name='psi', bases=disk)
16 t = dist.Field()
17
18 # Substitutions
19 phi, r = dist.local_grids(disk)
20
21 u = dist.VectorField(coords, bases=disk)
22 u['g'][0] = r
23 u['g'][1] = 0
24
25 # Problem
26 problem = d3.IVP([psi], time=t, namespace=locals())
27 problem.add_equation("dt(psi) = - u @ grad(psi)")
28
29 # Initial conditions
30 psi['g'] = self.initial_func(phi, r)
31
32 # Export vars
33 self.q = psi
34 self.t = t
35 self.problem = problem
36 self.variable_name = 'psi'
37
38
39 # Params
40 Nphi, Nr = 2**7, 2**7 # Grid spacing
41 n = 3 # initial bessel
42 time_step = np.pi/400 # Time step
43 stop_sim_time = 30*np.pi + time_step # Simulation length
44 Lr = 1
45 timestepper = d3.SBDF3
46 save_every = 200
47 scales = 2
48
49
50 def initial_func(phi, r):
51 return bessel_q(phi, r, n=n, Lr=Lr)
52
53
54 rotation_bessel = rotation_PDE(Nphi, Nr, initial_func, Lr=Lr,
55 stop_sim_time=stop_sim_time, timestep=time_step,
56 timestepper=timestepper,
57 local=False, save_every=save_every, scales=scales)
58 rotation_bessel.time_plot()

C.8.1 Computing errors

1 save_name = 'Insert file name here'
2
3 Nphi, Nr = 2**7, 2**7 # Grid spacing
4 scales = 2

67

5
6 # Create field for error processing
7 coords = d3.PolarCoordinates('phi', 'r')
8 dist = d3.Distributor(coords, dtype=np.float64)
9 disk = d3.DiskBasis(coords, shape=(Nphi, Nr), radius=Lr,

10 dealias=2, dtype=np.float64) # Circular domain
11 psi_init = dist.Field(name='u', bases=disk)
12 psi = dist.Field(name='u', bases=disk)
13 psi_init.change_scales(2)
14 psi.change_scales(2)
15
16 # Load first frame
17 phi, r, psi_initg, t = load_snapshot(save_name, variable_name='psi', index=0)
18 psi_init['g'] = psi_initg
19
20 max_i = int(stop_sim_time//(2*np.pi))
21 sim_dt = save_every * time_step
22 i_step = int((2*np.pi + .5) // sim_dt)
23 num_points = len(psi_initg.ravel())
24 print(psi_initg.shape)
25
26
27 errors = []
28 times = []
29
30 for i in range(0, max_i+1):
31 phi, r, psig, t = load_snapshot(save_name, variable_name='psi', index=i*i_step)
32 psi['g'] = psig
33 E = psi_init - psi
34 err = np.sqrt(d3.integ(E**2)).evaluate()['g'] # Integral error
35 errors.append(err[0, 0])
36 times.append(t)
37
38 fig, ax = plt.subplots(figsize=(6, 3))
39
40 ax.plot(np.array(times)/np.pi, errors, '-o')
41 ax.set_xlabel('Time')
42 ax.xaxis.set_major_formatter(plt.FormatStrFormatter('%g π'))
43 ax.set_ylabel('Normed errors')
44 plt.show()

C.9 Stommel–Munk problem

1 class stommel_PDE(time_PDE):
2 def make_problem(self):
3 '''Make PDE problem:
4 Stommel Equation on Unit Circle
5 dt(u) + 0.5 * gradperp(rˆ2) @ grad(u) = Q - r_0 lap(rˆ2);
6 where gradperp(.) = skew(grad(.)) in d3'''
7 # Import vars
8 dist = self.dist
9 disk = self.disk

10 edge = self.edge
11 coords = self.coords
12 Lr = self.Lr
13 r0 = self.r0
14 F = self.F
15 H = self.H
16 beta = self.beta
17 nu = self.nu
18 rho0 = self.rho0
19 Q_shift = self.Q_shift
20
21 # Overwrite fields from make_space
22 t = dist.Field()
23
24 # Substitutions
25 psi = dist.Field(name='psi', bases=disk)
26 zeta = dist.Field(name='zeta', bases=disk)
27
28 phi, r = dist.local_grids(disk)
29 y = dist.Field(name='y', bases=disk)
30 y['g'] = r * np.sin(phi)

68

31
32 Q = dist.Field(name='Q', bases=disk)
33 Q['g'] = (F * np.pi / (rho0 * Lr * H)) *\
34 np.sin(np.pi * (r * np.sin(phi) + Lr*Q_shift) /Lr)
35
36
37 # Tau method
38 tau_zeta = dist.Field(name='tau_zeta', bases=edge)
39 tau_psi = dist.Field(name='tau_psi', bases=edge)
40
41 def lift(A, i=-1):
42 lift_basis = disk.derivative_basis()
43 return d3.Lift(A, lift_basis, i)
44
45 # Problem
46 problem = d3.IVP([zeta, psi, tau_zeta, tau_psi], time=t, namespace=locals())
47 problem.add_equation("dt(zeta) + r0 * lap(psi) - nu * lap(zeta) + lift(

tau_zeta, -2) \
48 = -skew(grad(psi)) @ grad(zeta + beta * y) + Q")
49 problem.add_equation("lap(psi) - zeta + lift(tau_psi, -1) = 0")
50 problem.add_equation("psi(r=Lr) = 0")
51 problem.add_equation("zeta(r=Lr) = 0")
52
53 # Initial conditions
54 psi_init, zeta_init, t_init = self.initial_func
55 zeta['g'] = zeta_init(phi, r)
56 psi = self.initial_condition(psi, zeta)
57 t['g'] = t_init
58
59 # Export vars
60 self.q = psi
61 self.psi = psi
62 self.zeta = zeta
63 self.Q = Q
64 self.y = y
65 self.tau_zeta = tau_zeta
66 self.tau_psi = tau_psi
67 self.t = t
68 self.problem = problem
69 self.variable_name = 'psi'
70
71 def initial_condition(self, psi, zeta):
72 '''Set initial conds'''
73 # Tau method
74 tau = self.dist.Field(name='tau_zeta', bases=self.edge)
75
76 def lift(A):
77 lift_basis = self.disk.derivative_basis()
78 return d3.Lift(A, lift_basis, -1)
79
80 # problem
81 ic_problem = d3.LBVP([psi, tau], namespace=locals())
82 ic_problem.add_equation("lap(psi) + lift(tau) = zeta")
83 ic_problem.add_equation("psi(r=self.Lr) = 0")
84
85 # Solver
86 solver = ic_problem.build_solver()
87 solver.solve()
88 return psi
89
90 # Params
91 Nphi, Nr = 256, 256 # Grid spacing
92 n = 2 # initial bessel
93 time_step = 6 * 60 # Time step
94 timestepper = d3.SBDF3
95 stop_sim_time = 60 * 60 * 24 * 365 * 3 # Simulation length
96 save_every = 10 * 24 * 7
97 Lr = 2e6
98 dealias = 2
99 scale = 3

100
101
102 # Params
103 def zeta_init(phi, r):
104 phi_mesh, r_mesh = np.meshgrid(phi, r)
105 return 1e-16 * partial(bessel, n=n, Lr=Lr)(phi_mesh, r_mesh).T

69

106
107
108 constants = {
109 'F' : 0.1,
110 'H' : 500,
111 'r0' : 2e-7,
112 'beta' : 2e-11,
113 'nu' : 80,
114 'rho0' : 1000,
115 'Q_shift' : 0.01}
116 initial_func = [None, zeta_init, 0]
117
118
119 stommel_bessel = stommel_PDE(Nphi, Nr,
120 initial_func,
121 dealias=dealias,
122 stop_sim_time=stop_sim_time,
123 timestep=time_step,
124 timestepper=timestepper,
125 Lr=Lr,
126 scales=scale,
127 local=False,
128 save_every=save_every,
129 **constants)
130 stommel_bessel.time_plot()

C.9.1 Evolution of vorticity Laplacian

1 save_name = 'Insert file name here'
2 var_name = 'zeta'
3 inds = np.linspace(1, 52, num=52, dtype=int)
4
5 coords = d3.PolarCoordinates('phi', 'r')
6 dist = d3.Distributor(coords, dtype=np.float64)
7 disk = d3.DiskBasis(coords, shape=(256, 256), radius=2e6,
8 dealias=2, dtype=np.float64) # Circular domain
9 edge = disk.edge

10 phi, r = dist.local_grids(disk)
11 q = dist.Field(name='q', bases=disk)
12
13 ave = []
14 for i in inds:
15 phi, r, qg, t = load_snapshot(save_name, variable_name=var_name, index=i)
16 q.change_scales(3)
17 q['g'] = qg
18 p = d3.lap(q).evaluate() # p = lap(vorticity)
19 p.change_scales(3)
20 ave.append(np.average(np.abs(p['g'].T))) # take unweighted average of p
21
22 fig, ax = plt.subplots(1, 1, figsize=(8, 5))
23 ax.plot(inds, ave)
24 ax.set_yscale('log')
25 fig.tight_layout()
26 plt.show()

C.10 Dealiasing

1 def dealiasing_eg(Ns, psi, *, x=np.linspace(0, 1, num=2000), ax=None, legend=True):
2 '''
3 Ns = [N1, N2] = [number of basis fn, number of basis fn to dealias]
4 psi = fn to approx
5 x = domain
6 '''
7 pi = np.pi
8 cos = np.cos
9 sin = np.sin

10
11 # Generate basis
12 Bs = []
13 for N in Ns:
14 B = [np.ones_like(x)]
15 for i in range(N):

70

16 B.append(sin(pi*x*(i+1)))
17 B.append(cos(pi*x*(i+1)))
18 Bs.append(B)
19
20 # Generate coeffs
21 As = []
22 for B in Bs:
23 M = np.zeros((len(B), len(B)))
24 b = np.zeros(len(B))
25
26 for i, f in enumerate(B):
27 for j, g in enumerate(B):
28 M[i, j] = np.trapz(f*g, x) # mass matrix
29 b[i] = np.trapz(f*psi, x) # rhs
30
31 a = np.linalg.solve(M, b) # Ma = b
32 As.append(a)
33
34 approx = As[0]@Bs[0]
35 dealiasing = As[1][:len(Bs[0])]@Bs[1][:len(Bs[0])]
36
37 # Plot
38 if ax is None:
39 ax = plt
40 ax.plot(x, psi, '--', label='Actual', lw='3')
41 ax.plot(x, approx, label='Approximation')
42 s = Ns[1] / Ns[0]
43 ax.plot(x, dealiasing, label='Dealiasing')
44 ax.set_title('\mathcal{B}'+f'$_{{{Ns[0]}}}$ with dealiasing ${s:.1f}$')
45 if legend:
46 ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
47 return As
48
49
50 pi = np.pi
51 sin = np.sin
52 fig, axs = plt.subplots(1, 2, figsize=(12, 4))
53 dealiasing_eg([1, 2], (1 + 2*sin(pi*x))**2, ax=axs[0])
54 dealiasing_eg([5, 10], 10*sin(pi*x) + 4*sin(pi*3*x) + sin(pi*6*x) + sin(pi*10*x), ax=

axs[1], legend=False)
55 fig.tight_layout()
56 plt.show()

71

	Introduction
	Solving PDEs
	Outline of dissertation

	Spectral methods
	Basis choice
	Power series basis
	Fourier series basis
	Chebyshev basis
	Convergence

	Method of weighted residuals
	Collocation method
	Galerkin method

	Imposing boundary conditions
	Basis recombination
	Lifting
	Tau method

	Computing errors
	Dedalus implementation

	Poisson equation in Dedalus
	Creating the bases
	Solving using basis recombination
	Creating the forcing term
	Implementing the tau method
	Creating the problem
	Solving the problem
	Computing the error
	Results
	Comparison to finite difference

	Circular domains in Dedalus
	Poisson equation on a circle
	Dedalus implementation
	Creating the space
	Creating the problem
	Solving the problem

	Bessel function solution
	Dedalus implementation
	Results

	Initial value problems
	Forward Euler
	Linear multi-step methods
	Absolute stability
	Systems of PDEs
	Stiffness
	Dealiasing
	Dedalus implementation

	Solid body rotation in Dedalus
	Class initialisation
	Creating the problem
	Solving the problem in time
	Solving the advection equation
	Results
	Comparison of different timesteps
	Experimental comparison of timesteppers

	The Stommel–Munk problem
	Coriolis effect
	Vorticity equation
	The model
	Stommel model
	Munk Model
	Stommel–Munk model
	Initial conditions
	Parameter choices

	Expected behaviour
	Dedalus implementation
	Creating the problem

	Results
	Performance
	Varying wind forcing
	Varying viscosity

	Conclusion
	Future work
	GPU
	Conformal mappings
	Multilayer models

	Final remarks

	References
	Appendices
	Extra figures
	Nomenclature
	Variable naming conventions
	Operators and functions
	Parameters
	Constant parameters
	Tweaked parameters
	Simulation parameters

	Code
	Using Dedalus on Windows
	Packages used
	Helper functions
	Poisson on a square
	Basic polar solver
	Poisson on a circle
	Bessel solution

	Time-dependent polar solver
	Writing to drive
	Reading from drive

	Solid body rotation
	Computing errors

	Stommel–Munk problem
	Evolution of vorticity Laplacian

	Dealiasing

